Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/51613
DC FieldValueLanguage
dc.contributor.authorPlaza, A.en_US
dc.contributor.authorCarey, G. F.en_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:10:50Z-
dc.date.available2018-11-25T02:10:50Z-
dc.date.issued2000en_US
dc.identifier.issn0168-9274en_US
dc.identifier.urihttp://hdl.handle.net/10553/51613-
dc.description.abstractIn this paper we present a novel approach to the development of a class of local simplicial refinement strategies. The algorithm in two dimensions first subdivides certain edges. Then each triangle, if refined, is subdivided in two, three or four subelements depending on the previous division of its edges. Similarly, in three dimensions the algorithm begins by subdividing the two-dimensional triangulation composed by the faces of the tetrahedra (the skeleton) and then subdividing each tetrahedron in a compatible manner with the division of the faces. The complexity of the algorithm is linear in the number of added nodes. The algorithm is fully automatic and has been implemented to achieve global as well as local refinements. The numerical results obtained appear to confirm that the measure of degeneracy of subtetrahedra is bounded, and converges asymptotically to a fixed value when the refinement proceeds.en_US
dc.languageengen_US
dc.relation.ispartofApplied Numerical Mathematicsen_US
dc.sourceApplied Numerical Mathematics [ISSN 0168-9274], v. 32 (2), p. 195-218en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherGrid refinementen_US
dc.subject.other3D bisectionen_US
dc.subject.otherTetrahedraen_US
dc.subject.otherAdaptivityen_US
dc.titleLocal refinement of simplicial grids based on the skeletonen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/S0168-9274(99)00022-7
dc.identifier.scopus0033907129-
dc.identifier.isi000084551700005-
dc.identifier.isi000084551700005-
dcterms.isPartOfApplied Numerical Mathematics-
dcterms.sourceApplied Numerical Mathematics[ISSN 0168-9274],v. 32 (2), p. 195-218-
dc.contributor.authorscopusid7006613647-
dc.contributor.authorscopusid24517624600-
dc.description.lastpage218-
dc.identifier.issue2-
dc.description.firstpage195-
dc.relation.volume32-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000084551700005-
dc.contributor.daisngid259483-
dc.contributor.daisngid36333-
dc.identifier.investigatorRIDA-8210-2008-
dc.identifier.externalWOS:000084551700005-
dc.contributor.wosstandardWOS:Plaza, A
dc.contributor.wosstandardWOS:Carey, GF
dc.date.coverdateEnero 2000
dc.identifier.ulpgces
dc.description.jcr0,805
dc.description.jcrqQ2
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

90
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

85
checked on Mar 30, 2025

Page view(s)

111
checked on Jan 25, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.