Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51605
Campo DC Valoridioma
dc.contributor.authorPerdomo, Franciscoen_US
dc.contributor.authorPlaza, Ángelen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:06:36Z-
dc.date.available2018-11-25T02:06:36Z-
dc.date.issued2014en_US
dc.identifier.issn1895-1074en_US
dc.identifier.urihttp://hdl.handle.net/10553/51605-
dc.description.abstractThe Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle of the initial angle. The novelty of the proofs is the use of an hyperbolic metric in a shape space for triangles.en_US
dc.languageengen_US
dc.relationParticiones Triangulares y Algoritmos de Refinamiento.en_US
dc.relation.ispartofCentral European Journal of Mathematicsen_US
dc.sourceCentral European Journal of Mathematics [ISSN 1895-1074], v. 12 (12), p. 1796-1810en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherFinite element methoden_US
dc.subject.otherLongest-edge bisectionen_US
dc.subject.otherMesh refinementen_US
dc.subject.otherMesh regularityen_US
dc.subject.otherTriangulationen_US
dc.titleProperties of triangulations obtained by the longest-edge bisectionen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.2478/s11533-014-0448-4
dc.identifier.scopus84904550601-
dc.identifier.isi000339798400004-
dc.identifier.isi000339798400004-
dcterms.isPartOfCentral European Journal Of Mathematics-
dcterms.sourceCentral European Journal Of Mathematics[ISSN 1895-1074],v. 12 (12), p. 1796-1810-
dc.contributor.authorscopusid55348970700-
dc.contributor.authorscopusid7006613647-
dc.identifier.eissn1644-3616-
dc.description.lastpage1810-
dc.identifier.issue12-
dc.description.firstpage1796-
dc.relation.volume12-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid2597710-
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Perdomo, F
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateEnero 2014
dc.identifier.ulpgces
dc.description.jcr0,578
dc.description.jcrqQ3
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.