Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/51605
DC FieldValueLanguage
dc.contributor.authorPerdomo, Franciscoen_US
dc.contributor.authorPlaza, Ángelen_US
dc.contributor.otherPLAZA, ANGEL-
dc.date.accessioned2018-11-25T02:06:36Z-
dc.date.available2018-11-25T02:06:36Z-
dc.date.issued2014en_US
dc.identifier.issn1895-1074en_US
dc.identifier.urihttp://hdl.handle.net/10553/51605-
dc.description.abstractThe Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle of the initial angle. The novelty of the proofs is the use of an hyperbolic metric in a shape space for triangles.en_US
dc.languageengen_US
dc.relationParticiones Triangulares y Algoritmos de Refinamiento.en_US
dc.relation.ispartofCentral European Journal of Mathematicsen_US
dc.sourceCentral European Journal of Mathematics [ISSN 1895-1074], v. 12 (12), p. 1796-1810en_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherFinite element methoden_US
dc.subject.otherLongest-edge bisectionen_US
dc.subject.otherMesh refinementen_US
dc.subject.otherMesh regularityen_US
dc.subject.otherTriangulationen_US
dc.titleProperties of triangulations obtained by the longest-edge bisectionen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.2478/s11533-014-0448-4
dc.identifier.scopus84904550601-
dc.identifier.isi000339798400004-
dc.identifier.isi000339798400004-
dcterms.isPartOfCentral European Journal Of Mathematics-
dcterms.sourceCentral European Journal Of Mathematics[ISSN 1895-1074],v. 12 (12), p. 1796-1810-
dc.contributor.authorscopusid55348970700-
dc.contributor.authorscopusid7006613647-
dc.identifier.eissn1644-3616-
dc.description.lastpage1810-
dc.identifier.issue12-
dc.description.firstpage1796-
dc.relation.volume12-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid2597710-
dc.contributor.daisngid259483-
dc.identifier.investigatorRIDA-8210-2008-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Perdomo, F
dc.contributor.wosstandardWOS:Plaza, A
dc.date.coverdateEnero 2014
dc.identifier.ulpgces
dc.description.jcr0,578
dc.description.jcrqQ3
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
crisitem.project.principalinvestigatorPlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

2
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

4
checked on Mar 30, 2025

Page view(s)

122
checked on Jan 25, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.