Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/50866
DC FieldValueLanguage
dc.contributor.authorPackard, T. T.en_US
dc.contributor.authorBerdalet, E.en_US
dc.contributor.authorBlasco, D.en_US
dc.contributor.authorRoy, S. O.en_US
dc.contributor.authorSt-Amand, L.en_US
dc.contributor.authorLagacé, B.en_US
dc.contributor.authorLee, K.en_US
dc.contributor.authorGagné, J. P.en_US
dc.date.accessioned2018-11-24T19:29:39Z-
dc.date.available2018-11-24T19:29:39Z-
dc.date.issued1996en_US
dc.identifier.issn0142-7873en_US
dc.identifier.urihttp://hdl.handle.net/10553/50866-
dc.description.abstractThe respiratory O2 consumption in aerobic bacterial cultures has been modeled from the time profiles of the in vitro activity of the respiratory electron transfer system (ETS), the bacterial protein and the concentration of the carbon source in the cultures. The model was based on the concept of bisubstrate kinetic control of the ETS throughout the exponential, steady-state and senescent phases of the cultures. In the exponential phase, the measured rates of O2 consumption and the in vitro ETS activity were closely coupled, but in the senescent phase, they were uncoupled. The in vitro ETS activity remained high even after the culture's carbon source was exhausted, while the O2 consumption fell to low levels. Based on the hypothesis that this uncoupling was caused by limitation of the intracellular ETS substrates (NADH and NADPH), a semi-empirical model incorporating a bisubstrate enzyme kinetics algorithm was formulated and fitted to the observations of the experiments. The model predicted the rate of O2 consumption throughout the different phases of the cultures with an r2 > 0.92 (n = 9, P < 0.001) using physiologically realistic Michaelis and dissociation constants. These results suggest that plankton respiration in the field could be assessed more accurately than before by measuring the intracellular ETS substrates (NADH and NADPH), in addition to ETS activity, in plankton.en_US
dc.languageengen_US
dc.publisher0142-7873-
dc.relation.ispartofJournal of Plankton Researchen_US
dc.sourceJournal of Plankton Research [ISSN 0142-7873], v. 18, p. 1819-1835en_US
dc.subject2302 Bioquímicaen_US
dc.subject251001 Oceanografía biológicaen_US
dc.subject.otherETS activityen_US
dc.titleOxygen consumption in the marine bacterium Pseudomonas nautica predicted from ETS activity and bisubstrate enzyme kineticsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/plankt/18.10.1819en_US
dc.identifier.scopus0030302786-
dc.contributor.authorscopusid7004249480-
dc.contributor.authorscopusid55975291500-
dc.contributor.authorscopusid35565093700-
dc.contributor.authorscopusid8923658500-
dc.contributor.authorscopusid56636766200-
dc.contributor.authorscopusid6506671016-
dc.contributor.authorscopusid57196250604-
dc.contributor.authorscopusid57200973311-
dc.description.lastpage1835-
dc.description.firstpage1819-
dc.relation.volume18-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.orcid0000-0002-5880-1199-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNamePackard, Theodore Train-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.