Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/50865
DC FieldValueLanguage
dc.contributor.authorPackard, T.en_US
dc.contributor.authorBerdalet, E.en_US
dc.contributor.authorBlasco, D.en_US
dc.contributor.authorRoy, S. O.en_US
dc.contributor.authorSt-Amand, L.en_US
dc.contributor.authorLagacé, B.en_US
dc.contributor.authorLee, K.en_US
dc.contributor.authorGagné, J. P.en_US
dc.date.accessioned2018-11-24T19:29:12Z-
dc.date.available2018-11-24T19:29:12Z-
dc.date.issued1996en_US
dc.identifier.issn0948-3055en_US
dc.identifier.urihttp://hdl.handle.net/10553/50865-
dc.description.abstractCO2 production in aerobic bacteria was modeled from the time-courses of the in vitro activity of isocitrate dehydrogenase (IDH), bacterial protein, and the concentration of the carbon source in the cultures. The model was based on the concept of bisubstrate control of the IDH reaction throughout the exponential, steady-state, and senescent phases of the cultures. In the exponential phase, the measured rates of CO2 production and the in vitro IDH activity were closely coupled, but in the senescent phase, they became uncoupled. The in vitro IDH activity remained high even after the culture's carbon source was exhausted, while the CO2 production fell to low levels. Based on the hypothesis that this uncoupling was caused by internal substrate limitation, 2 mathematical models incorporating a bisubstrate enzyme kinetics algorithm were constructed and tested. The models predicted the rate of CO2 production throughout the different phases of the cultures with an r2 greater than 0.84.en_US
dc.languageengen_US
dc.publisher0948-3055
dc.relation.ispartofAquatic Microbial Ecologyen_US
dc.sourceAquatic Microbial Ecology [ISSN 0948-3055], v. 11, p. 11-19en_US
dc.subject230331 Química del aguaen_US
dc.subject2302 Bioquímicaen_US
dc.subject.otherRespirationen_US
dc.subject.otherMetabolismen_US
dc.subject.otherBacteriaen_US
dc.subject.otherCarbon dioxideen_US
dc.subject.otherOcean modelen_US
dc.subject.otherIsocitrate dehydrogenase activityen_US
dc.titleCO2 production predicted from isocitrate dehydrogenase activity and bisubstrate enzyme kinetics in the marine bacterium Pseudomonas nauticaen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3354/ame011011en_US
dc.identifier.scopus0002214859-
dc.contributor.authorscopusid7004249480-
dc.contributor.authorscopusid55975291500-
dc.contributor.authorscopusid35565093700-
dc.contributor.authorscopusid8923658500-
dc.contributor.authorscopusid56636766200-
dc.contributor.authorscopusid6506671016-
dc.contributor.authorscopusid57203464470-
dc.contributor.authorscopusid57200973311-
dc.description.lastpage19-
dc.description.firstpage11-
dc.relation.volume11-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.scieSCIE
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.orcid0000-0002-5880-1199-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNamePackard, Theodore Train-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (738,13 kB)
Show simple item record

SCOPUSTM   
Citations

23
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

21
checked on Nov 17, 2024

Page view(s)

87
checked on Jun 29, 2024

Download(s)

110
checked on Jun 29, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.