Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50856
Campo DC Valoridioma
dc.contributor.authorPackard, T. T.en_US
dc.contributor.authorChristensen, J. P.en_US
dc.date.accessioned2018-11-24T19:25:01Z-
dc.date.available2018-11-24T19:25:01Z-
dc.date.issued2004en_US
dc.identifier.issn0022-2402en_US
dc.identifier.urihttp://hdl.handle.net/10553/50856-
dc.description.abstractThe transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux can be calculated by integrating the vertical profile of the seawater respiration rate but is rarely done because measuring seawater respiration is so difficult. However, seawater respiratory oxygen consumption is the product of the combined activity of all the respiratory electron transfer systems in a seawater community of bacterioplankton, phytoplankton, and zooplankton. This respiratory electron transfer system (ETS) is the membrane bound enzymatic system that controls oxygen consumption and ATP production in all eukaryots and in almost all bacteria and archaea. As such, it represents potential respiratory oxygen consumption. Exploiting this, we measured plankton-community ETS activity in water column profiles in the Gulf of Maine to give the potential-respiration of the water column. To interpret these potentials in terms of actual seawater respiration we made use of previous measurements of respiratory oxygen consumption and ETS activity in the Gulf of Maine to calculate a ratio of respiratory potential to actual respiration. Armed with this ratio we calculated seawater respiration depth profiles from the ETS activity measurements. These profiles were characterized by: (1) high oxygen consumption rates in the euphotic zone; (2) subsurface maxima near the subsurface chlorophyll maxima (SCM); (3) rapid declines associated with thermoclines; (4) low declining rates below 50 m; (5) and elevated values occasionally near the bottom. Sea surface values ranged from 229 to 489 pmol O2 min-1 L-1. Euphotic zone maximum values ranged from 457 to 682 pmol O2 min-1 L-1 while the minimum values below 70 m ranged from 10 to 27 pmol O2 min-1 L-1. A depth-normalized power function described the respiratory profiles between their maxima and minima. Integrating these respiratory oxygen consumption profiles from the respiratory maximum to the near bottom minimum, we calculated carbon flux profiles. The vertical carbon fluxes through the 30 m, 50 m, and 100 m levels were 3.09 ± 1.55, 1.76 ± 0.96, and 0.93 ± 0.68 mol C min-1 m-2, respectively.en_US
dc.languageengen_US
dc.publisher0022-2402
dc.relation.ispartofJournal of Marine Researchen_US
dc.sourceJournal of Marine Research [ISSN 0022-2402], v. 62, p. 93-115en_US
dc.subject251001 Oceanografía biológicaen_US
dc.titleRespiration and vertical carbon flux in the Gulf of Maine water columnen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1357/00222400460744636en_US
dc.identifier.scopus2942696056-
dc.contributor.authorscopusid7004249480-
dc.contributor.authorscopusid7402504520-
dc.description.lastpage115-
dc.description.firstpage93-
dc.relation.volume62-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgces
dc.description.jcr1,397
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.orcid0000-0002-5880-1199-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNamePackard, Theodore Train-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.