Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/50850
Title: Modeling vertical carbon flux from zooplankton respiration
Authors: Packard, Theodore T. 
Gomez, May 
UNESCO Clasification: 251001 Oceanografía biológica
Keywords: Respiration
Vertical carbon flux
Issue Date: 2013
Publisher: 0079-6611
Project: Estudio de Un Nuevo Modelo Mecanistico Para El Metabolismo Del Zooplancton 
Campaña de Validación Para El Estudio Del Nuevo Modelo Mecanístico Para El Metabolismo Del Zooplacton en Aguas de Gran Canaria(Campaña Exzome) 
Metabolismo planctónico: Regulación Bioquímica e Impacto Oceanográfico sobre la Bomba Biológica 
Journal: Progress in Oceanography 
Abstract: The transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux is currently thought to support the respiration of all the organisms in the water column below the surface, the respiration of the organisms in the benthos, as well as the carbon lost to deep burial. Accordingly, for conditions where the benthic respiration and the carbon burial are small relative to the respiration in the water column, and where horizontal fluxes are known or negligible, the carbon flux can be calculated by integrating the vertical profile of the water-column plankton respiration rate. Here, this has been done for the zooplankton component of the vertical carbon flux from measurements of zooplankton ETS activity south of the Canary Island Archipelago. From zooplankton ETS activity depth profiles, zooplankton respiration depth profiles were calculated and using the equations for the profiles as models, the epipelagic (3.05 μmol CO2 m−3 h−1), mesopelagic (112.82 nmol CO2 m−3 h−1), and bathypelagic (27.89 nmol CO2 m−3 h−1) zooplankton respiration for these waters were calculated. Then, by integration of the depth-normalized respiration profiles, zooplankton-associated carbon flux profiles below 150 m were calculated. These had an uncertainty of ±40%. At the station level (local regional variation) the variability was ±114% (n = 16). At 150 m and 500 m the average passive carbon flux associated with the zooplankton was 36 (±114%) and 20 (±113%) μmol C m−2 h−1. The carbon transfer efficiency (Teff) from the 150 to the 500 m levels averaged 51 ± 21% and a new metric, the nutrient retention efficiency (NRE), averaged 49 ± 21%. This metric is an index of the efficiency with which nutrients are maintained in the epipelagic zone and is directly related to the respiration in the water column. The carbon flux equation describing the pooled data (n = 16) was 131.14Z−0.292. Using this as a model for zooplankton-associated carbon flux south of the Canary Islands one can calculate that carbon flux from epipelagic waters at 200 m is 27.91 μmol C m−2 h−1, and the carbon flux from mesopelagic waters at 1000 m, is 17.45 μmol C m−2 h−1.
URI: http://hdl.handle.net/10553/50850
ISSN: 0079-6611
DOI: 10.1016/j.pocean.2013.01.003
Source: Progress in Oceanography [ISSN 0079-6611], v. 110, p. 59-68
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.