Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50850
Campo DC Valoridioma
dc.contributor.authorPackard, Theodore T.en_US
dc.contributor.authorGomez, Mayen_US
dc.contributor.otherGomez, May-
dc.contributor.otherPackard, Theodore-
dc.date.accessioned2018-11-24T19:22:13Z-
dc.date.available2018-11-24T19:22:13Z-
dc.date.issued2013en_US
dc.identifier.issn0079-6611en_US
dc.identifier.urihttp://hdl.handle.net/10553/50850-
dc.description.abstractThe transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux is currently thought to support the respiration of all the organisms in the water column below the surface, the respiration of the organisms in the benthos, as well as the carbon lost to deep burial. Accordingly, for conditions where the benthic respiration and the carbon burial are small relative to the respiration in the water column, and where horizontal fluxes are known or negligible, the carbon flux can be calculated by integrating the vertical profile of the water-column plankton respiration rate. Here, this has been done for the zooplankton component of the vertical carbon flux from measurements of zooplankton ETS activity south of the Canary Island Archipelago. From zooplankton ETS activity depth profiles, zooplankton respiration depth profiles were calculated and using the equations for the profiles as models, the epipelagic (3.05 μmol CO2 m−3 h−1), mesopelagic (112.82 nmol CO2 m−3 h−1), and bathypelagic (27.89 nmol CO2 m−3 h−1) zooplankton respiration for these waters were calculated. Then, by integration of the depth-normalized respiration profiles, zooplankton-associated carbon flux profiles below 150 m were calculated. These had an uncertainty of ±40%. At the station level (local regional variation) the variability was ±114% (n = 16). At 150 m and 500 m the average passive carbon flux associated with the zooplankton was 36 (±114%) and 20 (±113%) μmol C m−2 h−1. The carbon transfer efficiency (Teff) from the 150 to the 500 m levels averaged 51 ± 21% and a new metric, the nutrient retention efficiency (NRE), averaged 49 ± 21%. This metric is an index of the efficiency with which nutrients are maintained in the epipelagic zone and is directly related to the respiration in the water column. The carbon flux equation describing the pooled data (n = 16) was 131.14Z−0.292. Using this as a model for zooplankton-associated carbon flux south of the Canary Islands one can calculate that carbon flux from epipelagic waters at 200 m is 27.91 μmol C m−2 h−1, and the carbon flux from mesopelagic waters at 1000 m, is 17.45 μmol C m−2 h−1.en_US
dc.languageengen_US
dc.publisher0079-6611-
dc.relationEstudio de Un Nuevo Modelo Mecanistico Para El Metabolismo Del Zooplanctonen_US
dc.relationCampaña de Validación Para El Estudio Del Nuevo Modelo Mecanístico Para El Metabolismo Del Zooplacton en Aguas de Gran Canaria(Campaña Exzome)en_US
dc.relationMetabolismo planctónico: Regulación Bioquímica e Impacto Oceanográfico sobre la Bomba Biológicaen_US
dc.relation.ispartofProgress in Oceanographyen_US
dc.sourceProgress in Oceanography [ISSN 0079-6611], v. 110, p. 59-68en_US
dc.subject251001 Oceanografía biológicaen_US
dc.subject.otherRespirationen_US
dc.subject.otherVertical carbon fluxen_US
dc.titleModeling vertical carbon flux from zooplankton respirationen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.pocean.2013.01.003
dc.identifier.scopus84875380649-
dc.identifier.isi000317169300005-
dcterms.isPartOfProgress In Oceanography-
dcterms.sourceProgress In Oceanography[ISSN 0079-6611],v. 110, p. 59-68-
dc.contributor.authorscopusid7004249480-
dc.contributor.authorscopusid7401734371-
dc.description.lastpage68-
dc.description.firstpage59-
dc.relation.volume110-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid311411-
dc.contributor.daisngid1273639-
dc.identifier.investigatorRIDL-9561-2014-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Packard, TT
dc.contributor.wosstandardWOS:Gomez, M
dc.date.coverdateMarzo 2013
dc.identifier.ulpgces
dc.description.sjr2,397
dc.description.jcr3,986
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorGómez Cabrera, María Milagrosa-
crisitem.project.principalinvestigatorGómez Cabrera, María Milagrosa-
crisitem.project.principalinvestigatorGómez Cabrera, María Milagrosa-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Biología-
crisitem.author.orcid0000-0002-5880-1199-
crisitem.author.orcid0000-0002-7396-6493-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNamePackard, Theodore Train-
crisitem.author.fullNameGómez Cabrera, María Milagrosa-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

27
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 15-dic-2024

Visitas

63
actualizado el 25-nov-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.