Please use this identifier to cite or link to this item:
Title: 5,7,3′-trihydroxy-3,4′-dimethoxyflavone-induced cell death in human leukemia cells is dependent on caspases and activates the MAPK pathway
Authors: Torres, Fernando
Quintana, José 
Estévez, Francisco 
UNESCO Clasification: 32 Ciencias médicas
320703 Carcinogénesis
Keywords: G(2)-M Phase Arrest
Differential Regulation
Induced Apoptosis
Mammalian-Cells, et al
Issue Date: 2010
Project: Desarrollo de Nuevos, Mas Seguros y Mas Efectivos Compuestos Antileucemicos 
Evaluación de Tdf Como Potencial Fármaco Antitumoral. 
Journal: Molecular Carcinogenesis 
Abstract: Flavonoids are polyphenolic compounds which display a vast array of biological activities and are promising anticancer agents. In this study we investigated the effect of 5,7,3′-trihydroxy-3,4′-dimethoxyflavone (THDF) on viability of nine human tumor cell lines and found that it was highly cytotoxic against leukemia cells. THDF induced G2-M phase cell-cycle arrest and apoptosis through a caspase-dependent mechanism involving cytochrome c release, processing of multiple caspases (caspase-3, -6, -7, and -9) and cleavage of poly(ADP-ribose) polymerase. Overexpression of the protective mitochondrial proteins Bcl-2 and Bcl-xL conferred partial resistance to THDF-induced apoptosis. This flavonoid induced the phosphorylation of members of the mitogen-activated protein kinases (MAPKs) family and cell death was attenuated by inhibition of c-jun N-terminal kinases/stress-activated protein kinases (JNK/SAPK) and of extracellular signal-regulated kinases (ERK) 1/2. In the present study we report that THDF-induced cell death is mediated by an intrinsic dependent apoptotic event involving mitochondria and MAPKs, and through a mechanism independent of the generation of reactive oxygen species. The results suggest that THDF could be useful in the development of novel anticancer agents.
ISSN: 0899-1987
DOI: 10.1002/mc.20619
Source: Molecular Carcinogenesis[ISSN 0899-1987],v. 49 (5), p. 464-475 (Mayo 2010)
Appears in Collections:Artículos
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.