Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/50527
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ramírez, Penélope | |
dc.contributor.author | Carta, José Antonio | |
dc.date.accessioned | 2018-11-24T16:44:20Z | - |
dc.date.available | 2018-11-24T16:44:20Z | - |
dc.date.issued | 2006 | |
dc.identifier.issn | 0196-8904 | |
dc.identifier.uri | http://hdl.handle.net/10553/50527 | - |
dc.description.abstract | This paper analyses the use of a general probability distribution obtained through application of the maximum entropy principle (MEP), constrained by the low-order statistical moments of a given set of wind speed data, in the estimation of wind energy. For this purpose, a comparison is made between the two parameter Weibull distribution and the distributions obtained through the MER This comparison is based on an analysis of the level of fit to the cumulative frequencies of the hourly mean wind speeds recorded at weather stations located in the Canarian Archipelago. A comparison is also made of the ability to describe the experimental mean wind power density. The application of the probability plot correlation coefficient R 2, adjusted for degrees of freedom, shows that the Weibull distribution, whose parameters are estimated using the maximum likelihood principle, provide worse fits in all the cases analysed than those obtained through the maximum entropy distributions constrained by the low-order statistical moments. It is, thus, shown that maximum entropy distributions constrained by the three low-order statistical moments, in addition to representing the probabilities of observed periods of null wind speeds, offer less relative errors in determining the mean wind power density than the Weibull distribution. However, among other advantages of the Weibull distribution, is the greater simplicity of the calculations involved. (c) 2005 Elsevier Ltd. All rights reserved. | |
dc.publisher | 0196-8904 | |
dc.relation.ispartof | Energy Conversion and Management | |
dc.source | Energy Conversion and Management[ISSN 0196-8904],v. 47, p. 2564-2577 | |
dc.subject.other | Speed Frequency-Distributions | |
dc.subject.other | Statistical Mechanics | |
dc.subject.other | Weibull Statistics | |
dc.subject.other | Information Theory | |
dc.title | The use of wind probability distributions derived from the maximum entropy principle in the analysis of wind energy. A case study | |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1016/j.enconman.2005.10.027 | |
dc.identifier.scopus | 33646754223 | |
dc.identifier.isi | 000238277200049 | |
dc.contributor.authorscopusid | 8334207300 | |
dc.contributor.authorscopusid | 7003652043 | |
dc.description.lastpage | 2577 | |
dc.description.firstpage | 2564 | |
dc.relation.volume | 47 | |
dc.type2 | Artículo | es |
dc.contributor.daisngid | 4727747 | |
dc.contributor.daisngid | 1198474 | |
dc.contributor.wosstandard | WOS:Ramirez, P | |
dc.contributor.wosstandard | WOS:Carta, JA | |
dc.date.coverdate | Septiembre 2006 | |
dc.identifier.ulpgc | Sí | es |
dc.description.jcr | 1,325 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería Mecánica | - |
crisitem.author.orcid | 0000-0003-1379-0075 | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.fullName | Carta González, José Antonio | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
117
checked on Feb 16, 2025
WEB OF SCIENCETM
Citations
102
checked on Feb 16, 2025
Page view(s)
92
checked on Jan 18, 2025
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.