Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/50502
DC FieldValueLanguage
dc.contributor.authorSantana, Oliverio J.en_US
dc.contributor.authorRamirez, Alexen_US
dc.contributor.authorValero, Mateoen_US
dc.date.accessioned2018-11-24T16:32:13Z-
dc.date.available2018-11-24T16:32:13Z-
dc.date.issued2004en_US
dc.identifier.isbn978-0-7695-2061-2en_US
dc.identifier.urihttp://hdl.handle.net/10553/50502-
dc.description.abstractFetch engine performance is seriously limited by the branch prediction table access latency. This fact has lead to the development of hardware mechanisms, like prediction overriding, aimed to tolerate this latency. However, prediction overriding requires additional support and recovery mechanisms, which increases the fetch architecture complexity. In this paper, we show that this increase in complexity can be avoided if the interaction between the fetch architecture and software code optimizations is taken into account. We use aggressive procedure inlining to generate long streams of instructions that are used by the fetch engine as the basic prediction unit. We call instruction stream to a sequence of instructions from the target of a taken branch to the next taken branch. These instruction streams are long enough to feed the execution engine with instructions during multiple cycles, while a new stream prediction is being generated, and thus hiding the prediction table access latency. Our results show that the length of instruction streams compensates the increase in the instruction cache miss rate caused by inlining. We show that, using procedure inlining, the need for a prediction overriding mechanism is avoided, reducing the fetch engine complexity.en_US
dc.languageengen_US
dc.sourceProceedings - Eighth Workshop on Interaction between Compilers and Computer Architectures, INTERACT-8 2004, p. 97-106en_US
dc.subject330406 Arquitectura de ordenadoresen_US
dc.titleReducing fetch architecture complexity using procedure inliningen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.doi10.1109/INTERA.2004.1299514en_US
dc.identifier.scopus4544376985-
dc.identifier.isi000222020100010-
dc.contributor.authorscopusid7003605046-
dc.contributor.authorscopusid7401734996-
dc.contributor.authorscopusid24475914200-
dc.description.lastpage106-
dc.description.firstpage97-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-7511-5783-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSantana Jaria, Oliverio Jesús-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 17, 2024

Page view(s)

71
checked on Jan 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.