Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/50377
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Medeiros, Marcos D. | en_US |
dc.contributor.author | Gonçalves, Luiz Marcos G. | en_US |
dc.contributor.author | Frery, Alejandro C. | en_US |
dc.contributor.other | Goncalves, Luiz | - |
dc.contributor.other | Frery, Alejandro | - |
dc.date.accessioned | 2018-11-24T15:33:52Z | - |
dc.date.available | 2018-11-24T15:33:52Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/50377 | - |
dc.description.abstract | Stereo matching is an open problem in Computer Vision, for which local features are extracted to identify corresponding points in pairs of images. The results are heavily dependent on the initial steps. We apply image decomposition in multiresolution levels, for reducing the search space, computational time, and errors. We propose a solution to the problem of how deep (coarse) should the stereo measures start, trading between error minimization and time consumption, by starting stereo calculation at varying resolution levels, for each pixel, according to fuzzy decisions. Our heuristic enhances the overall execution time since it only employs deeper resolution levels when strictly necessary. It also reduces errors because it measures similarity between windows with enough details. We also compare our algorithm with a very fast multi-resolution approach, and one based on fuzzy logic. Our algorithm performs faster and/or better than all those approaches, becoming, thus, a good candidate for robotic vision applications. We also discuss the system architecture that efficiently implements our solution. | en_US |
dc.language | eng | en_US |
dc.publisher | 1424-8220 | |
dc.relation.ispartof | Sensors | en_US |
dc.source | Sensors [ISSN 1424-8220], v. 10, p. 1093-1118 (Enero 2010) | en_US |
dc.subject | 2209 Óptica | en_US |
dc.subject.other | Image analysis | en_US |
dc.subject.other | Fuzzy rules | en_US |
dc.subject.other | Multiresolution | en_US |
dc.subject.other | Sensor configuration | en_US |
dc.subject.other | Stereo matching | en_US |
dc.subject.other | Vision | en_US |
dc.title | Using fuzzy logic to enhance stereo matching in multiresolution images | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/100201093 | en_US |
dc.identifier.scopus | 77950258670 | - |
dc.identifier.isi | 000274928900005 | - |
dcterms.isPartOf | Sensors | |
dcterms.source | Sensors[ISSN 1424-8220],v. 10 (2), p. 1093-1118 | |
dc.contributor.authorscopusid | 24802749600 | - |
dc.contributor.authorscopusid | 8843298100 | - |
dc.contributor.authorscopusid | 7003561251 | - |
dc.description.lastpage | 1118 | en_US |
dc.description.firstpage | 1093 | en_US |
dc.relation.volume | 10 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.wos | WOS:000274928900005 | - |
dc.contributor.daisngid | 9348609 | - |
dc.contributor.daisngid | 489293 | - |
dc.contributor.daisngid | 215914 | - |
dc.identifier.investigatorRID | C-3786-2009 | - |
dc.identifier.investigatorRID | A-8855-2008 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2010 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.jcr | 1,774 | |
dc.description.jcrq | Q3 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.orcid | 0000-0002-8002-5341 | - |
crisitem.author.fullName | C. Frery, Alejandro | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
6
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
3
checked on Nov 17, 2024
Page view(s)
21
checked on Nov 18, 2023
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.