Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/50293
Título: | Identifying communities in social media with deep learning | Autores/as: | Barros, Pedro Cardoso-Pereira, Isadora Barbosa, Keila Frery, Alejandro C. Allende-Cid, Héctor Martins, Ivan Ramos, Heitor S. |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Community detection Deep Learning Text classification Convolutional networks Autoencoder |
Fecha de publicación: | 2018 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 10th International Conference on Social Computing and Social Media (SCSM 2018) | Resumen: | This work aims at analyzing twitter data to identify communities of Brazilian Senators. To do so, we collected data from 76 Brazilian Senators and used autoencoder and bi-gram to the content of tweets to find similar subjects and hence cluster the senators into groups. Thereafter, we applied an unsupervised sentiment analysis to identify the communities of senators that share similar sentiments about a selected number of relevant topics. We find that is able to create meaningful clusters of tweets of similar contents. We found 13 topics all of them relevant to the current Brazilian political scenario. The unsupervised sentiment analysis shows that, as a result of the complex political system (with multiple parties), many senators were identified as independent (19) and only one (out of 11) community can be classified as a community of senators that support the current government. All other detected communities are not relevant. | URI: | http://hdl.handle.net/10553/50293 | ISBN: | 978-3-319-91484-8 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-91485-5_13 | Fuente: | Social Computing and Social Media. Technologies and Analytics. SCSM 2018. Lecture Notes in Computer Science, v. 10914 LNCS, p. 171-182 |
Colección: | Capítulo de libro |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.