Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/50051
Campo DC Valoridioma
dc.contributor.authorCastellanos, Paolaen_US
dc.contributor.authorPelegrí Llopart,José Luisen_US
dc.contributor.authorBaldwin, Danen_US
dc.contributor.authorEmery, William J.en_US
dc.contributor.authorHernández-Guerra, Alonsoen_US
dc.contributor.otherHernandez-Guerra, Alonso-
dc.contributor.otherPelegri, Josep-
dc.contributor.otherEmery, William-
dc.contributor.otherCastellanos, Paola-
dc.date.accessioned2018-11-24T12:52:37Z-
dc.date.available2018-11-24T12:52:37Z-
dc.date.issued2013en_US
dc.identifier.issn0143-1161en_US
dc.identifier.urihttp://hdl.handle.net/10553/50051-
dc.description.abstractThe ocean surface velocity field in the Cape Blanc region, off Northwest Africa, is investigated with the maximum cross-correlation (MCC) method applied to channel-4 Advanced Very High Resolution Radiometer satellite images. An initial sensitivity analysis allows us to select the four parameters that provide maximum area coverage and the best velocity resolution, while limiting the standard deviation for each velocity component within reasonable values. These are (m, n, MV, CT) = (22, 32, 50, 0.6), where m and n are the number of pixels of the search window (SW) and reference window (RW), respectively, MV is the maximum possible velocity (in cm s−1), and CT is a correlation threshold for a feature to be tracked. A total of 489 images, for years 2005 and 2006, are analysed, and 106 velocity maps are generated with good coverage of the coastal transition zone (CTZ), most of them for the winter (34) and spring (59) seasons. We remove spurious data using the method's own filters (MV, CT, and a neighbour-vector comparison), requesting the velocity components to have Gaussian distributions and smoothing the resulting velocity fields with a median-vector filter. The instantaneous velocity maps illustrate the response of the alongshore coastal jet north of Cape Blanc (and its extension along the Cape Verde frontal region) to wind forcing, as well as the presence of numerous mesoscalar features (100–300 km wide) superposed on a westward offshore transport south of Cape Blanc. We also produce mean and standard deviation winter and spring velocity maps, which are compared with the corresponding mean sea surface temperature fields. The along-shore and offshore flow is better defined and is more intense in spring than in winter, in concordance with cross-slope sharper temperature gradients during this season, and brings about a cooling of the whole region. We identify five different ubiquitous currents: a southwestward jet north of Cape Blanc, a northwestward jet off Banc d'Argin, an offshore convergent jet, a spring jet-like feature at 18° N, and a southward flow in the southwestern CTZ.en_US
dc.languageengen_US
dc.publisher0143-1161-
dc.relation.ispartofInternational Journal of Remote Sensingen_US
dc.sourceInternational Journal of Remote Sensing [ISSN 0143-1161], v. 34, p. 3587-3606en_US
dc.subject2510 Oceanografíaen_US
dc.subject250616 Teledetección (Geología)en_US
dc.subject.otherSatellite Images
dc.subject.otherCurrents
dc.subject.otherFluxes
dc.subject.otherTemperature
dc.subject.otherRetrieval
dc.subject.otherModel
dc.titleWinter and spring surface velocity fields in the Cape Blanc region as deduced with the maximum cross-correlation techniqueen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/01431161.2012.716545
dc.identifier.scopus84873656899-
dc.identifier.isi000330301700016-
dcterms.isPartOfInternational Journal Of Remote Sensing-
dcterms.sourceInternational Journal Of Remote Sensing[ISSN 0143-1161],v. 34 (9-10), p. 3587-3606-
dc.contributor.authorscopusid55747253200-
dc.contributor.authorscopusid7003869003-
dc.contributor.authorscopusid7201847039-
dc.contributor.authorscopusid35598959400-
dc.contributor.authorscopusid6701736545-
dc.description.lastpage3606-
dc.description.firstpage3587-
dc.relation.volume34-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid4703675-
dc.contributor.daisngid358123-
dc.contributor.daisngid6492379-
dc.contributor.daisngid101002-
dc.contributor.daisngid660191-
dc.identifier.investigatorRIDA-4747-2008-
dc.identifier.investigatorRIDL-5815-2014-
dc.identifier.investigatorRIDL-6179-2017-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Castellanos, P
dc.contributor.wosstandardWOS:Pelegri, JL
dc.contributor.wosstandardWOS:Baldwin, D
dc.contributor.wosstandardWOS:Emery, WJ
dc.contributor.wosstandardWOS:Hernandez-Guerra, A
dc.date.coverdateEnero 2013
dc.identifier.ulpgces
dc.description.sjr0,795
dc.description.jcr1,359
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IOCAG: Oceanografía Física-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0002-4883-8123-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNamePelegrí Llopart, José Luis-
crisitem.author.fullNameHernández Guerra, Alonso-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

13
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

12
actualizado el 17-nov-2024

Visitas

69
actualizado el 28-oct-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.