Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/49715
Título: | Kriging filters for multidimensional signal processing | Autores/as: | Ruiz-Alzola, J. Alberola-López, C. Westin, C. F. |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Wiener filters Kriging Co-Kriging Geostatistics Variogram |
Fecha de publicación: | 2005 | Editor/a: | 0165-1684 | Publicación seriada: | Signal Processing | Resumen: | The Wiener filter is the well-known solution for linear minimum mean square error (LMMSE) signal estimation. This filter assumes the mean to be known and usually constant. On the other hand, the Kriging filter is an incremental theory, developed within the Geostatistical community, with respect to that of Wiener filters. The extension relies on adopting a parametric model for the mean (usually a polynomial). The goal of this paper is twofold. First, it is intended as a comprehensive treatment of the Kriging approach from a signal processing perspective, with previous uses of Kriging in signal processing being extended. Second, we are deriving a general methodology for FIR filter design, including any situation where an optimal FIR estimator from possibly incomplete and/or noisy data is needed. A proof of concept on a theoretical covariance model and selected examples on interpolation, approximation and filtering on real-world images illustrate the performance of the method. | URI: | http://hdl.handle.net/10553/49715 | ISSN: | 0165-1684 | DOI: | 10.1016/j.sigpro.2004.09.009 | Fuente: | Signal Processing[ISSN 0165-1684],v. 85, p. 413-439 |
Colección: | Artículos |
Citas SCOPUSTM
26
actualizado el 22-dic-2024
Citas de WEB OF SCIENCETM
Citations
21
actualizado el 22-dic-2024
Visitas
76
actualizado el 30-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.