Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/49277
Título: | Upper Confidence Bound learning approach for real HF measurements | Autores/as: | Melian Gutierrez,Laura Beatriz Modi, Navikkumar Moy, Christophe Pérez-Álvarez, Iván Bader, Faouzi Zazo, Santiago |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Cognitive radio Transceivers Heuristic algorithms Learning (artificial intelligence) Databases |
Fecha de publicación: | 2015 | Publicación seriada: | 2015 IEEE International Conference on Communication Workshop, ICCW 2015 | Conferencia: | IEEE International Conference on Communication Workshop, ICCW 2015 | Resumen: | New strategies based on cognitive radio are being discussed to make a more efficient use of the HF band. Multiple users transmit in this band with a worldwide coverage but having multiple collisions with other HF stations. The use of the Upper Confidence Bound (UCB) algorithm is proposed in this work to provide them with a dynamic spectrum access mitigating mutual interference. Based on reinforcement learning, it is used to select the best channel of a wideband HF transceiver in terms of availability. The feasibility of this proposal is demonstrated with real measurements of amateur contests in the HF band. To the best of the authors' knowledge, this is one of the few works on learning with real HF measurements. | URI: | http://hdl.handle.net/10553/49277 | ISBN: | 9781467363051 | ISSN: | 2164-7038 | DOI: | 10.1109/ICCW.2015.7247209 | Fuente: | 2015 IEEE International Conference on Communication Workshop, ICCW 2015 (7247209), p. 381-386 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.