Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/49193
Título: Dancing with bulls and bears: Nearest-neighbour forecasts for the Nikkei index
Autores/as: Fernández-Rodríguez, Fernando 
Sosvilla-Rivero, Simón
Dolores García-Artiles, María
Palabras clave: Efficient Capital-Markets
Nonlinear Dynamics
Stock Returns
Time-Series
Regression, et al.
Fecha de publicación: 1999
Editor/a: 0922-1425
Publicación seriada: Japan and the World Economy 
Resumen: In this paper we apply nearest-neighbour local predictors, inspired by the literature on forecasting in nonlinear systems, to the Nikkei 225 Index of the Tokyo Stock Market for the period 1 January 1986-5 June 1997. When forecasting performance is measured by Theil's U statistic, our nearest-neighbour predictors perform worse than a random walk, outperforming the random walk directional forecast. When formally testing for forecast accuracy, the results suggest that predictions from a random walk were statistically significantly better than the nearest-neighbour predictors for the entire forecasting period, as well as for one of the subperiods (a 'bull' market episode). Finally, when assessing the economic value of the nearest-neighbour predictors in absence of trading costs, the results of using them as a filter technique are superior to a buy-and-hold strategy for both the entire forecasting period acid for 'bear' market subperiods, where tests of 'forecast conditional efficiency' (or 'forecast encompassing') detected that the nearest-neighbour predictors contain useful information for forecasting the Nikkei Index that is not contained in the random walk. (C) 1999 Elsevier Science B.V. All rights reserved. JEL classification: C53; G15.
URI: http://hdl.handle.net/10553/49193
ISSN: 0922-1425
Fuente: Japan and the World Economy[ISSN 0922-1425],v. 11, p. 395-413
Colección:Artículos
Vista completa

Citas SCOPUSTM   

28
actualizado el 29-dic-2024

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 25-feb-2024

Visitas

84
actualizado el 30-nov-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.