Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/49180
Campo DC Valoridioma
dc.contributor.authorAcosta González, Eduardoen_US
dc.contributor.authorFernández-Rodríguez, Fernandoen_US
dc.contributor.authorGanga, Hichamen_US
dc.date.accessioned2018-11-24T04:55:46Z-
dc.date.available2018-11-24T04:55:46Z-
dc.date.issued2019en_US
dc.identifier.issn0927-7099en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/49180-
dc.description.abstractRecent studies of the prediction of corporate financial failure have taken into account many factors, mostly corresponding to financial ratios derived from firms' annual accounts. Nevertheless, the current crisis and the consequent exponential increase in rates of insolvency have made it clear that the phenomenon of bankruptcy cannot be explained without reference to macroeconomic variables; thus, the overall condition of the economy, and not just the internal financial ratios of firms, must be addressed. In this paper, focusing on the Spanish construction sector from 1995 to 2011, we analyse selected econometric models for predicting bankruptcy, in which both macroeconomic variables and financial ratios are employed. In view of the large number of variables with these characteristics, which are frequently correlated with each other, and the consequent enormous number of models that would be obtained, we decided to focus on just five optimal econometric models for predicting the financial failure of firms, at 1, 2, 3, 4 and 5 years in advance, with a limited number of explanatory factors, to be selected by an automatic statistical procedure, guided solely by the data and based on a genetic algorithm. The empirical results obtained show that these econometric models are capable of achieving high rates of predictive success, both for in-sample and for out-of-sample predictions. In the latter case, failure and non-failure firms were classified with success rates of 98.5 and 82.5%, respectively, 1 year in advance. This predictive quality is maintained at 2, 3 and even 4 years in advance.en_US
dc.languagespaen_US
dc.publisher0927-7099-
dc.relation.ispartofComputational Economicsen_US
dc.sourceComputational Economics[ISSN 0927-7099],v. 53 (1), p. 227-257, (Enero 2019)en_US
dc.subject.otherBankruptcy Predictionen_US
dc.subject.otherDefaulten_US
dc.subject.otherRatiosen_US
dc.subject.otherRisken_US
dc.subject.otherForecasting Financial Failureen_US
dc.subject.otherGenetic Algorithmsen_US
dc.subject.otherReal Estateen_US
dc.subject.otherBankruptcyen_US
dc.subject.otherFinancial Distressen_US
dc.titlePredicting Corporate Financial Failure Using Macroeconomic Variables and Accounting Dataen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10614-017-9737-xen_US
dc.identifier.scopus85028818612-
dc.identifier.isi000455498900011-
dc.contributor.authorscopusid19638646400-
dc.contributor.authorscopusid6603053452-
dc.contributor.authorscopusid57195569783-
dc.identifier.eissn1572-9974-
dc.description.lastpage257en_US
dc.identifier.issue1-
dc.description.firstpage227en_US
dc.relation.volume53en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid4494041-
dc.contributor.daisngid1514720-
dc.contributor.daisngid29489161-
dc.description.numberofpages31en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Acosta-Gonzalez, E-
dc.contributor.wosstandardWOS:Fernandez-Rodriguez, F-
dc.contributor.wosstandardWOS:Ganga, H-
dc.date.coverdateEnero 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,349
dc.description.jcr1,317
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
dc.description.ssciSSCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.orcid0000-0002-9547-8546-
crisitem.author.orcid0000-0002-8808-9286-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.fullNameAcosta González, Eduardo-
crisitem.author.fullNameFernández Rodríguez,Fernando Emilio-
Colección:Artículos
Adobe PDF (931,22 kB)
Vista resumida

Citas SCOPUSTM   

24
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 23-may-2024

Visitas

133
actualizado el 25-may-2024

Descargas

54
actualizado el 25-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.