Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/49164
Title: The k-Fibonacci sequence and the Pascal 2-triangle
Authors: Falcón, Sergio 
Plaza, Ángel 
UNESCO Clasification: 120504 Teoría elemental de los números
Keywords: Golden Section
Geometry
Number
Dodecahedron
Mathematics, et al
Issue Date: 2007
Project: Mtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamiento 
Journal: Chaos, Solitons and Fractals 
Abstract: The general k-Fibonacci sequence {Fk, n}n = 0∞ were found by studying the recursive application of two geometrical transformations used in the well-known 4-triangle longest-edge (4TLE) partition. This sequence generalizes, between others, both the classical Fibonacci sequence and the Pell sequence. In this paper many properties of these numbers are deduced and related with the so-called Pascal 2-triangle.
URI: http://hdl.handle.net/10553/49164
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2006.10.022
Source: Chaos, Solitons and Fractals [ISSN 0960-0779], v. 33 (1), p. 38-49
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

106
checked on May 2, 2021

Page view(s)

36
checked on May 8, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.