Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/49162
Título: Combinatorial proofs of Honsberger-type identities
Autores/as: Plaza, A. 
Falcón, S. 
Clasificación UNESCO: 120504 Teoría elemental de los números
Palabras clave: Combinatorial proof
Generalized Fibonacci numbers
Honsberger identities
Fecha de publicación: 2008
Proyectos: Mtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamiento 
Publicación seriada: International Journal of Mathematical Education in Science and Technology 
Resumen: In this article, we consider some generalizations of Fibonacci numbers. We consider k-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), the (k, l)-Fibonacci numbers (that follow the recurrence rule F-k,F- n+2 = kF(k, n+1) + F-k,F- n), and the Fibonacci p-step numbers (F-p(n) = F-p(n - 1) + F-p(n - 2)+...+F-p(n-p), with n>p + 1, and p>2). Then we provide combinatorial interpretations of these numbers as square and domino tilings of n-boards, and by easy combinatorial arguments Honsberger identities for these Fibonacci-like numbers are given. While it is a straightforward task to prove these identities with induction, and also by arithmetical manipulations such as rearrangements, the approach used here is quite simple to follow and eventually reduces the proof to a counting problem.
URI: http://hdl.handle.net/10553/49162
ISSN: 0020-739X
DOI: 10.1080/00207390801986916
Fuente: International Journal of Mathematical Education in Science and Technology [ISSN 0020-739X], v. 39 (6), p. 785-792
Colección:Artículos
Vista completa

Citas SCOPUSTM   

2
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 15-dic-2024

Visitas

128
actualizado el 05-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.