Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/49157
Title: On k-Fibonacci sequences and polynomials and their derivatives
Authors: Falcón, Sergio 
Plaza, Ángel 
UNESCO Clasification: 120504 Teoría elemental de los números
Keywords: Numbers
Spacetime
Physics
Topics
Issue Date: 2009
Project: Mtm2005-08441-C02-02. Particiones Triangulares y Algoritmos de Refinamiento 
Journal: Chaos, Solitons and Fractals 
Abstract: The k-Fibonacci polynomials are the natural extension of the k-Fibonacci numbers and many of their properties admit a straightforward proof. Here in particular, we present the derivatives of these polynomials in the form of convolution of k-Fibonacci polynomials. This fact allows us to present in an easy form a family of integer sequences in a new and direct way. Many relations for the derivatives of Fibonacci polynomials are proven.
URI: http://hdl.handle.net/10553/49157
ISSN: 0960-0779
DOI: 10.1016/j.chaos.2007.03.007
Source: Chaos, Solitons and Fractals [ISSN 0960-0779], v. 39 (3), p. 1005-1019
Appears in Collections:Artículos
Show full item record

SCOPUSTM   
Citations

66
checked on Aug 1, 2021

Page view(s)

50
checked on Jul 31, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.