Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/48982
DC FieldValueLanguage
dc.contributor.authorSeck, Elhadji Idrissaen_US
dc.contributor.authorDoña-Rodríguez, J. M.en_US
dc.contributor.authorFernández-Rodríguez, C.en_US
dc.contributor.authorGonzález-Díaz, O. M.en_US
dc.contributor.authorAraña, J.en_US
dc.contributor.authorPérez-Peña, J.en_US
dc.contributor.otherGonzalez Diaz, Oscar-
dc.contributor.otherArana Mesa, Javier-
dc.contributor.otherFernandez-Rodriguez, Cristina-
dc.contributor.otherDona Rodriguez, Jose Miguel-
dc.date.accessioned2018-11-24T02:49:13Z-
dc.date.available2018-11-24T02:49:13Z-
dc.date.issued2012en_US
dc.identifier.issn1385-8947en_US
dc.identifier.urihttp://hdl.handle.net/10553/48982-
dc.description.abstractIn this work we compared the photocatalytic activity of sol–gel synthesized nanocrystalline TiO2 material (ECT-1023t) and a commercial TiO2 (Degussa P25) in the elimination, mineralization and detoxification of waters contaminated by the herbicide bentazon and its toxic intermediates under UV light. Adsorption and kinetics studies were undertaken and the effect of adding two different co-oxidants (H2O2 and S2O8-2) was analyzed for both photocatalysts. The optimal basic operating parameters (pH, photocatalyst load, initial concentration of bentazon) to eliminate the herbicide and its toxic intermediates were established for both photocatalysts. The most efficient TiO2 for removal of bentazon and its toxic intermediates was ECT-1023t at pH = 7. The apparent initial rate constant of bentazon degradation was two times higher for ECT-1023t than for P25. A Langmuir–Hinshelwood kinetic model showed satisfactory bentazon degradation of up to 0.25 mM for P25 and up to 0.05 mM for ECT-1023t. From FTIR studies, it seems that the interaction of bentazon with both photocatalysts occurred through the SO2 group. The most efficient photocatalyst for detoxification of treated solution was ECT-1023t, using the marine bacteria Vibrio fischeri as the test organism. When using an initial bentazon concentration of 0.265 mM, the evolution of toxicity saw a 72% reduction in bioluminescence inhibition for ECT-1023t and only a 33% reduction for P25 after 2 h of irradiation. No inhibitory growth effect of the herbicide bentazon and its photoproducts was observed for either photocatalyst in any of the irradiated samples collected at predetermined times when Lemna minor was used as the test organism. In parallel, the three photoproducts formed in the earlier steps of bentazon degradation were identified by LC–MS and a comparison on the evolution of these compounds by using both photocatalysts was performed. The results showed that the intermediates formed by hydroxylation of aromatic ring are in highest concentration when ECT-1023t is used. On the contrary, the hydroxylation of isopropyl group in bentazon is the main pathway of bentazon photodegradation when P25 is used as catalyst.en_US
dc.languageengen_US
dc.relationModificación y Optimización de Catalizadores Basados en Materiales Altamente Fotoactivos Para Procesos Fotocatalíticos en Fase Acuosa y Gaseosa.en_US
dc.relationWater Detoxification Using Innovative vi-Nanocatalystsen_US
dc.relation.ispartofChemical Engineering Journalen_US
dc.sourceChemical Engineering Journal [ISSN 1385-8947], v. 203, p. 52-62en_US
dc.subject221001 Catálisisen_US
dc.subject.otherBentazonen_US
dc.subject.otherECT-1023ten_US
dc.subject.otherPhotocatalysisen_US
dc.subject.otherVibrio fischerien_US
dc.subject.otherFTIRen_US
dc.titlePhotocatalytical removal of bentazon using commercial and sol-gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studiesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cej.2012.06.119en_US
dc.identifier.scopus84865661832-
dc.identifier.isi000309630300007-
dcterms.isPartOfChemical Engineering Journal-
dcterms.sourceChemical Engineering Journal[ISSN 1385-8947],v. 203, p. 52-62-
dc.contributor.authorscopusid55327250800-
dc.contributor.authorscopusid6701567121-
dc.contributor.authorscopusid8381553300-
dc.contributor.authorscopusid6602708293-
dc.contributor.authorscopusid57194192035-
dc.contributor.authorscopusid7005207158-
dc.contributor.authorscopusid7004839316-
dc.description.lastpage62en_US
dc.description.firstpage52en_US
dc.relation.volume203en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid8375980-
dc.contributor.daisngid1159344-
dc.contributor.daisngid2293971-
dc.contributor.daisngid2523621-
dc.contributor.daisngid878298-
dc.contributor.daisngid4553361-
dc.contributor.daisngid11090994-
dc.contributor.daisngid1479300-
dc.identifier.investigatorRIDK-7365-2014-
dc.identifier.investigatorRIDK-8643-2014-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Seck, EI-
dc.contributor.wosstandardWOS:Dona-Rodriguez, JM-
dc.contributor.wosstandardWOS:Fernandez-Rodriguez, C-
dc.contributor.wosstandardWOS:Gonzalez-Diaz, OM-
dc.contributor.wosstandardWOS:Arana, J-
dc.contributor.wosstandardWOS:Perez-Pena, J-
dc.date.coverdateSeptiembre 2012en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,517
dc.description.jcr3,473
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Didácticas Específicas-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales.-
crisitem.author.deptIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.orcid0000-0003-3604-1544-
crisitem.author.orcid0000-0001-6255-893X-
crisitem.author.orcid0000-0003-0876-8121-
crisitem.author.orcid0000-0002-5551-029X-
crisitem.author.orcid0000-0003-1889-2281-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.parentorgIU de Estudios Ambientales y Recursos Naturales-
crisitem.author.fullNameDoña Rodríguez, José Miguel-
crisitem.author.fullNameFernández Rodríguez, Cristina-
crisitem.author.fullNameGonzález Díaz, Oscar Manuel-
crisitem.author.fullNameAraña Mesa, Francisco Javier-
crisitem.author.fullNamePérez Peña,Jesús-
crisitem.project.principalinvestigatorPérez Peña,Jesús-
crisitem.project.principalinvestigatorDoña Rodríguez, José Miguel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

25
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

23
checked on Nov 17, 2024

Page view(s)

112
checked on Jun 22, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.