Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48819
Campo DC Valoridioma
dc.contributor.authorGarcía, Norma Monzónen_US
dc.contributor.authorChaves, Víctor Alfonso Elizondoen_US
dc.contributor.authorBriceño, Juan Carlosen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2018-11-24T01:13:07Z-
dc.date.available2018-11-24T01:13:07Z-
dc.date.issued2012en_US
dc.identifier.isbn9783642289415en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/48819-
dc.description.abstractEarth's biodiversity has been suffering the effects of human contamination, and as a result there are many species of plants and animals that are dying. Automatic recognition of pollen species by means of computer vision helps to locate specific species and through this identification, study all the diseases and predators which affect this specie, so biologist can improve methods to preserve this species. This work focuses on analysis and classification stages. A classification approach using binarization of pollen grain images, contour and feature extraction to locate the pollen grain objects within the images is being proposed. A Hidden Markov Model classifier was used to classify 17 genders and species from 11 different families of tropical honey bee's plants achieving a mean of 98.77% of success.en_US
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7208 LNAI, p. 521-532en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherObject Recognitionen_US
dc.subject.otherClassificationen_US
dc.subject.otherAutomationen_US
dc.subject.otherTextureen_US
dc.subject.otherImagesen_US
dc.subject.otherShapeen_US
dc.subject.otherIdentificationen_US
dc.subject.otherMicroscopeen_US
dc.titlePollen grains contour analysis on verification approachen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference7th International Conference on Hybrid Artificial Intelligent Systems (HAIS)en_US
dc.identifier.doi10.1007/978-3-642-28942-2_47en_US
dc.identifier.scopus84858786877-
dc.identifier.isi000309166900047-
dc.contributor.authorscopusid55129895200-
dc.contributor.authorscopusid55130464700-
dc.contributor.authorscopusid57197530947-
dc.contributor.authorscopusid6602376272-
dc.description.lastpage532en_US
dc.description.firstpage521en_US
dc.relation.volume7208 LNAIen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid4328027-
dc.contributor.daisngid34664491-
dc.contributor.daisngid4476234-
dc.contributor.daisngid265761-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Garcia, NM-
dc.contributor.wosstandardWOS:Chaves, VAE-
dc.contributor.wosstandardWOS:Briceno, JC-
dc.contributor.wosstandardWOS:Travieso, CM-
dc.date.coverdateMarzo 2012en_US
dc.identifier.conferenceidevents120801-
dc.identifier.ulpgces
dc.description.sjr0,323
dc.description.sjrqQ3
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate28-03-2012-
crisitem.event.eventsenddate30-03-2012-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Actas de congresos
miniatura
Adobe PDF (416,4 kB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.