Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/48816
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Beltrán-Castro, Juan | en_US |
dc.contributor.author | Valencia-Aguirre, Juliana | en_US |
dc.contributor.author | Orozco-Alzate, Mauricio | en_US |
dc.contributor.author | Castellanos-Domínguez, Germán | en_US |
dc.contributor.author | Travieso-González, Carlos M. | en_US |
dc.date.accessioned | 2018-11-24T01:11:25Z | - |
dc.date.available | 2018-11-24T01:11:25Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.isbn | 9783642386787 | en_US |
dc.identifier.issn | 0302-9743 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/48816 | - |
dc.description.abstract | In this paper a methodology for rainfall forecasting is presented, using the principle of decomposition and ensemble. In the proposed framework, the employed decomposition technique is the Ensemble Empirical Mode Decomposition (EEMD), which divides the original data into a set of simple components. Each component is modeled with a Feed Forward Neural Network (FNN) as a forecasting tool. Finally, the individual forecasting results for all components are combined to obtain the prediction result of the input signal. Experiments were performed on a real-observed rainfall data, and the attained results were compared against a single FNN model for the raw data, showing an improvement on the system performance. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Lecture Notes in Computer Science | en_US |
dc.source | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7902 LNCS, p. 471-480 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Forecasting | en_US |
dc.subject.other | Neural Networks | en_US |
dc.subject.other | Ensemble Empirical Mode Decomposition | en_US |
dc.subject.other | Rainfall | en_US |
dc.title | Rainfall forecasting based on ensemble empirical mode decomposition and neural networks | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.identifier.doi | 10.1007/978-3-642-38679-4_47 | en_US |
dc.identifier.scopus | 84880053480 | - |
dc.contributor.authorscopusid | 55790922600 | - |
dc.contributor.authorscopusid | 36761935900 | - |
dc.contributor.authorscopusid | 14623081400 | - |
dc.contributor.authorscopusid | 25640642900 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.description.lastpage | 480 | en_US |
dc.description.firstpage | 471 | en_US |
dc.relation.volume | 7902 LNCS | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 0,329 | |
dc.description.sjrq | Q3 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
19
checked on Mar 30, 2025
Page view(s)
45
checked on Jan 27, 2024
Download(s)
48
checked on Jan 27, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.