Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48805
Título: | Automated detection of bright lesions from contrast normalized fundus images | Autores/as: | Issac, Ashish Madan, Rishabh Dutta, Malay Kishore Travieso, Carlos M. |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Fundus Image Exudates Diabetic Retinopathy Top-Hat Transform Average filter, et al. |
Fecha de publicación: | 2017 | Conferencia: | 9th International Conference on Contemporary Computing (IC3) | Resumen: | Exudates are one of the abnormalities present in the eye which can lead to vision loss. Fundus images may consist of artifacts which occur during image acquisition and hamper the accuracy of detection of exudates. There is a need to develop an image processing based techniques for automated and correct segmentation of exudates from fundus images. This paper demonstrates an automatic computer vision algorithm for efficient identification of the exudates from fundus images by strategic fusion of techniques i.e. contrast normalization, top-hat transformation and average filtering. The proposed technique correctly detects exudates from the fundus images and rejects the artifacts and reflections. The average computation time for exudates segmentation from fundus images is 11 seconds. The proposed method is computationally efficient and robust and can be used for real time applications. | URI: | http://hdl.handle.net/10553/48805 | ISBN: | 9781509032518 | DOI: | 10.1109/IC3.2016.7880224 | Fuente: | 2016 9th International Conference on Contemporary Computing, IC3 2016 (7880224) |
Colección: | Actas de congresos |
Visitas
45
actualizado el 15-jul-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.