Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48804
Campo DC Valoridioma
dc.contributor.authorPandey, Pulkiten_US
dc.contributor.authorBhan, Anupamaen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2018-11-24T01:04:40Z-
dc.date.available2018-11-24T01:04:40Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538608500en_US
dc.identifier.urihttp://hdl.handle.net/10553/48804-
dc.description.abstractIdentification of the Root canal length is a major concern in the dentistry worldwide, which currently seeks the manual calculation in order to detect the measurement of the teeth. Intensity inhomogeneity often is a major problem in dental x-rays which causes considerable difficulties in segmentation. For better computer-aided diagnosis in dentistry, having a precise tooth segmentation is a critical task, as the cysts and inflammatory lesions generally occur around tooth root areas and these areas in radiographs are generally subject to noise, poor contrast, and very uneven illumination. This paper presents an effective segmentation method using a combinational approach of Local Gaussian Distribution fitting energy along with level sets. Here the local intensities of images are defined by Gaussian distributions which are combined with the level set function for accurate segmentations of teeth contour. The experimental results indicate that segmentation achieves the less number of iterations making it computationally fast and work in real time situation.en_US
dc.languageengen_US
dc.relation.ispartof2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedingsen_US
dc.source2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings (7985529)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherCLAHEen_US
dc.subject.otherSegmentationen_US
dc.subject.otherBilateral filteren_US
dc.subject.otherGaussian Distributionen_US
dc.subject.otherIndependent level setsen_US
dc.titleAutomatic Image Processing Based Dental Image Analysis Using Automatic Gaussian Fitting Energy and Level Setsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017en_US
dc.identifier.doi10.1109/IWOBI.2017.7985529en_US
dc.identifier.scopus85028578154-
dc.contributor.authorscopusid56988601500-
dc.contributor.authorscopusid56205889500-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid6602376272-
dc.identifier.issue7985529-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2017en_US
dc.identifier.conferenceidevents121608-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.event.eventsstartdate10-07-2017-
crisitem.event.eventsenddate12-07-2017-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.