Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48802
Título: | Analysis of Heart Sound for Automated Diagnosis of Cardiac Disorders | Autores/as: | Singh, Anushikha Dutta, Malay Kishore Travieso, Carlos M. |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Cardiac Disorders HeartSounds Body auscultation Signal processing |
Fecha de publicación: | 2017 | Publicación seriada: | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings | Conferencia: | 5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017 | Resumen: | Body auscultation one of the main common clinical diagnostic technique for assessment of cardiac disorders. This clinical method is cheap and effective and requires professional doctors to understand and interpret the heart sound for diagnosis of cardiac diseases. This paper presents basic analysis and comparison of heart sounds recorded from healthy and unhealthy subjects for automated screening of cardiac disorders. Some characteristics of heart sounds such as probability distribution of amplitude and frequency contents are quantified using signal processing to automate the diagnosis of cardiac disorders. Experiments were carried on the Heart sounds database created under National Institute of Health (National Center for Research Resources) and results are encouraging. The experiment results indicates enough discrimination between heart sounds from healthy and unhealthy heart sounds for automated screening of cardiac disorders using signal processing. | URI: | http://hdl.handle.net/10553/48802 | ISBN: | 9781538608500 | DOI: | 10.1109/IWOBI.2017.7985528 | Fuente: | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings (7985528) |
Colección: | Actas de congresos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Visitas
31
actualizado el 22-abr-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.