Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/48763
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Moreno, Elías | |
dc.contributor.author | Girón, F. J. | |
dc.contributor.author | Vázquez-Polo, F. J. | |
dc.contributor.author | Negrín, M. A. | |
dc.contributor.other | Negrin, Miguel | |
dc.contributor.other | Vazquez Polo, Francisco Jose | |
dc.date.accessioned | 2018-11-24T00:43:32Z | - |
dc.date.available | 2018-11-24T00:43:32Z | - |
dc.date.issued | 2012 | |
dc.identifier.issn | 0377-2217 | |
dc.identifier.uri | http://hdl.handle.net/10553/48763 | - |
dc.description.abstract | This paper deals with the decision problem of choosing an optimal medical treatment, among M possible candidates, when the states of nature are the net benefit of the treatments, and regression models for the treatment cost and effectiveness are assumed. In this setting a crucial step in the analysis is the construction of the population subgroups sharing characteristics specified by the covariates, so that optimal decisions are now not for the whole population of patients but for patient population subgroups.We argue that the existing formulations of population subgroups in the literature are too rigid and unrealistic for real applications, and instead we formulate the population subgroups on the base of selected "influential" covariates. The Bayesian variable selector we use is an optimal one under the 01 loss function, which means choosing the subset of covariates having the highest posterior probabilities based on the so-called intrinsic priors, an objective Bayesian tool that exhibits an excellent performance.For each population subgroup we study the optimal Bayesian decisions for two different utility functions. One optimal decision is that obtained maximizing the expected net benefit, and the other maximizing the expected number of times that the treatment having the highest net benefit is chosen.Illustrations of the procedure for real data show that the subset of influential covariates may vary across treatments. Subgroup optimal treatments are derived and compared with those given by preceding methods. (C) 2011 Elsevier B.V. All rights reserved. | |
dc.publisher | 0377-2217 | |
dc.relation.ispartof | European Journal of Operational Research | |
dc.source | European Journal of Operational Research[ISSN 0377-2217],v. 218, p. 512-522 | |
dc.subject.other | Effectiveness Acceptability Curves | |
dc.subject.other | Subgroup Analysis | |
dc.subject.other | Base-Line | |
dc.subject.other | Trial | |
dc.subject.other | Uncertainty | |
dc.subject.other | Adjustment | |
dc.subject.other | Framework | |
dc.title | Optimal healthcare decisions: The importance of the covariates in cost-effectiveness analysis | |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1016/j.ejor.2011.10.030 | |
dc.identifier.scopus | 84855651120 | |
dc.identifier.isi | 000300484400024 | |
dcterms.isPartOf | European Journal Of Operational Research | |
dcterms.source | European Journal Of Operational Research[ISSN 0377-2217],v. 218 (2), p. 512-522 | |
dc.contributor.authorscopusid | 7202827673 | |
dc.contributor.authorscopusid | 7006422246 | |
dc.contributor.authorscopusid | 6602318225 | |
dc.contributor.authorscopusid | 9249657200 | |
dc.description.lastpage | 522 | |
dc.description.firstpage | 512 | |
dc.relation.volume | 218 | |
dc.type2 | Artículo | es |
dc.identifier.wos | WOS:000300484400024 | |
dc.contributor.daisngid | 27720153 | |
dc.contributor.daisngid | 658275 | |
dc.contributor.daisngid | 1028174 | |
dc.contributor.daisngid | 29952969 | |
dc.contributor.daisngid | 1285254 | |
dc.identifier.investigatorRID | K-8293-2017 | |
dc.identifier.investigatorRID | C-9730-2009 | |
dc.contributor.wosstandard | WOS:Moreno, E | |
dc.contributor.wosstandard | WOS:Giron, FJ | |
dc.contributor.wosstandard | WOS:Vazquez-Polo, FJ | |
dc.contributor.wosstandard | WOS:Negrin, MA | |
dc.date.coverdate | Abril 2012 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 2,418 | |
dc.description.jcr | 2,038 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa | - |
crisitem.author.dept | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.dept | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.dept | GIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa | - |
crisitem.author.dept | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.dept | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.orcid | 0000-0002-0632-6138 | - |
crisitem.author.orcid | 0000-0002-7074-6268 | - |
crisitem.author.parentorg | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.parentorg | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.fullName | Vázquez Polo, Francisco José | - |
crisitem.author.fullName | Negrín Hernández, Miguel Ángel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
12
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
11
checked on Nov 17, 2024
Page view(s)
49
checked on Sep 7, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.