Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/48689
Title: | Bayesian segmentation and clustering for determining cloud mask images | Authors: | Barreto, D. Murtagh, F. Marcello, J. |
UNESCO Clasification: | 250616 Teledetección (Geología) | Keywords: | Bayes factor multiband image Markov model Gaussian mixture model Segmentation, et al |
Issue Date: | 2002 | Journal: | Proceedings of SPIE - The International Society for Optical Engineering | Conference: | Opto-Ireland 2002: Optical metrology, Imaging, and Machine Vision | Abstract: | We assess both marginal density clustering, and spatial clustering using a Markov random field, on multiband Earth observation data. We use a Bayes factor assessment procedure in all cases. We find that the spatial model leads to better results, although the non-spatial clustering achieves a better false alarm rate. | URI: | http://hdl.handle.net/10553/48689 | ISSN: | 0277-786X | DOI: | 10.1117/12.463768 | Source: | Proceedings of SPIE - The International Society for Optical Engineering[ISSN 0277-786X],v. 4877, p. 144-155 |
Appears in Collections: | Actas de congresos |
SCOPUSTM
Citations
2
checked on Dec 15, 2024
WEB OF SCIENCETM
Citations
1
checked on Dec 15, 2024
Page view(s)
66
checked on Dec 30, 2023
Download(s)
136
checked on Dec 30, 2023
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.