Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48676
Título: Featured-based algorithm for the automated registration of multisensorial/multitemporal oceanographic satellite imagery
Autores/as: Eugenio González, Francisco 
Marcello, Javier 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Image Registration
Feature Detection
Contour Matching
Optimization Approach
Multitemporal And Multisensorial Images
Fecha de publicación: 2009
Proyectos: Esp2005-06823-C05-04 Calibración de Las Medidas Obtenidas Por El Radiometro Miras de la Mision Smos y Generacion de Mapas de Salinidad y Humedad Del Suelo. Parte Ulpgc 
Publicación seriada: Algorithms 
Resumen: Spatial registration of multidate or multisensorial images is required for many applications in remote sensing. Automatic image registration, which has been extensively studied in other areas of image processing, is still a complex problem in the framework of remote sensing. In this work we explore an alternative strategy for a fully automatic and operational registration system capable of registering multitemporal and multisensorial remote sensing satellite images with high accuracy and avoiding the use of ground control points, exploiting the maximum reliable information in both images (coastlines not occluded by clouds), which have been coarsely geometrically corrected only using an orbital prediction model. The automatic feature-based approach is summarized as follows: i) Reference image coastline extraction; ii) Sensed image gradient energy map estimation and iii) Contour matching, mapping function estimation and transformation of the sensed images. Several experimental results for single sensor imagery (AVHRR/3) and multisensorial imagery (AVHRR/3-SeaWiFS-MODIS-ATSR) from different viewpoints and dates have verified the robustness and accuracy of the proposed automatic registration algorithm, demonstrating its capability of registering satellite images of coastal areas within one pixel. © 2009 by the authors.
URI: http://hdl.handle.net/10553/48676
ISSN: 1999-4893
DOI: 10.3390/a2031087
Fuente: Algorithms[ISSN 1999-4893],v. 2 (3), p. 1087-1104
Colección:Artículos
miniatura
Adobe PDF (703,56 kB)
Vista completa

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 17-nov-2024

Visitas

15
actualizado el 28-ago-2021

Descargas

11
actualizado el 28-ago-2021

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.