Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48674
Título: Hierarchical segmentation of vegetation areas in high spatial resolution images by fusion of multispectral information
Autores/as: Calderero, Felipe
Marqués, Ferran
Marcello, Javier 
Eugenio, Francisco 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Image Segmentation
Region Merging
Multispectral Images
Information Fusion
Fecha de publicación: 2009
Publicación seriada: IEEE International Geoscience and Remote Sensing Symposium proceedings 
Conferencia: 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009 
Resumen: A new region-based methodology for the automated extraction and hierarchical segmentation of vegetation areas into high spatial resolution images is proposed. This approach is based on the iterative and cooperative fusion of the independent segmentation results of equal or different resolution spectral bands, combined with an unsupervised classification into vegetation and no-vegetation regions. The result is a hierarchy of partitions with most relevant information at different levels of resolution of the vegetation areas. In addition, the high flexibility of the scheme allows different configurations depending on the final purpose. For instance, considering the size of the vegetation areas into the hierarchy, or prioritizing the information into the high resolution panchromatic band to improve the accuracy of both vegetation extraction and segmentation. This general tool for vegetation analysis is tested into high spatial resolution images from IKONOS and QuickBird satellites.
URI: http://hdl.handle.net/10553/48674
ISBN: 9781424433957
ISSN: 2153-6996
DOI: 10.1109/IGARSS.2009.5417329
Fuente: International Geoscience and Remote Sensing Symposium (IGARSS),v. 4 (5417329)
Colección:Actas de congresos
miniatura
Adobe PDF (939,04 kB)
Vista completa

Citas SCOPUSTM   

4
actualizado el 10-nov-2024

Visitas

64
actualizado el 03-feb-2024

Descargas

62
actualizado el 03-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.