Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/48674
Título: | Hierarchical segmentation of vegetation areas in high spatial resolution images by fusion of multispectral information | Autores/as: | Calderero, Felipe Marqués, Ferran Marcello, Javier Eugenio, Francisco |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Image Segmentation Region Merging Multispectral Images Information Fusion |
Fecha de publicación: | 2009 | Publicación seriada: | IEEE International Geoscience and Remote Sensing Symposium proceedings | Conferencia: | 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009 | Resumen: | A new region-based methodology for the automated extraction and hierarchical segmentation of vegetation areas into high spatial resolution images is proposed. This approach is based on the iterative and cooperative fusion of the independent segmentation results of equal or different resolution spectral bands, combined with an unsupervised classification into vegetation and no-vegetation regions. The result is a hierarchy of partitions with most relevant information at different levels of resolution of the vegetation areas. In addition, the high flexibility of the scheme allows different configurations depending on the final purpose. For instance, considering the size of the vegetation areas into the hierarchy, or prioritizing the information into the high resolution panchromatic band to improve the accuracy of both vegetation extraction and segmentation. This general tool for vegetation analysis is tested into high spatial resolution images from IKONOS and QuickBird satellites. | URI: | http://hdl.handle.net/10553/48674 | ISBN: | 9781424433957 | ISSN: | 2153-6996 | DOI: | 10.1109/IGARSS.2009.5417329 | Fuente: | International Geoscience and Remote Sensing Symposium (IGARSS),v. 4 (5417329) |
Colección: | Actas de congresos |
Citas SCOPUSTM
4
actualizado el 24-nov-2024
Visitas
64
actualizado el 03-feb-2024
Descargas
62
actualizado el 03-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.