Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/48510
DC FieldValueLanguage
dc.contributor.authorAlonso Hernández, Jesús Bernardinoen_US
dc.contributor.authorBarragan-Pulido, Maria L.en_US
dc.contributor.authorGonzalez-Torres, Jose P.en_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorDe Leon Y De Juan, Joseen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorVyas, Garimaen_US
dc.date.accessioned2018-11-23T22:26:38Z-
dc.date.available2018-11-23T22:26:38Z-
dc.date.issued2018en_US
dc.identifier.isbn9781538630457en_US
dc.identifier.issn2168-2232en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/48510-
dc.description.abstractThe objective of this report is to design a mechanism of classification that, through electroglottography, helps distinguishing between healthy and pathological subjects, as well as maximizing the efficiency of electroglottography through an optimal configuration of the classification parameters of SVM (Support Vector Machine). The proposed system consists in parameterizing electroglottography signals obtained in the open database, Saarbruecken Voice DataBase, and to draw the more relevant characteristics in temporary, frequency and cepstral domain. Afterwards, the samples are classified with a SVM. The study carried out contains different combinations of parameters and characteristics in order to assess the appropriate configuration considering: the recorded vowel, the type of windowing, the configured SVM percentages of training and the different values of the SVM parameters. The results obtained are compared to the real data, in this way, it is obtained the performance values of the system (precision, sensitivity and specificity) for each features configuration contemplated. The best results come from vowel I, 30 ms windowing with 50% overlapping, percentages of training around 80-90% (PES higher than PEP) and γ and σ 2 values of 100 and 0.1 respectively. This study expects to provide a greater knowledge to the classification methods based on electroglottography as an aid in diagnosing laryngeal diseases.en_US
dc.languageengen_US
dc.relationGeneracion de Un Marco Unificado Para El Desarrollo de Patrones Biometricos de Comportamientoen_US
dc.relation.ispartofIEEE Accessen_US
dc.source2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018 (8474260), p. 365-371en_US
dc.subject32 Ciencias médicasen_US
dc.subject3205 Medicina internaen_US
dc.subject.otherElectroglottographyen_US
dc.subject.otherLaryngeal diseaseen_US
dc.subject.otherSignal processingen_US
dc.subject.otherParameter extractionen_US
dc.subject.otherSupport Vector Machineen_US
dc.titleNew Feature Extraction from Electroglottographic Signals Applied to Automatic Detection of Laryngeal Pathologiesen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018en_US
dc.identifier.doi10.1109/SPIN.2018.8474260en_US
dc.identifier.scopus85055410550-
dc.contributor.authorscopusid57195466969-
dc.contributor.authorscopusid57204392907-
dc.contributor.authorscopusid57204397545-
dc.contributor.authorscopusid57201316633-
dc.contributor.authorscopusid55636321292-
dc.contributor.authorscopusid6507700523-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid56151635800-
dc.description.lastpage371en_US
dc.identifier.issue8474260-
dc.description.firstpage365en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.date.coverdateFebrero 2018en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr0,609
dc.description.jcr4,098
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.project.principalinvestigatorFerrer Ballester, Miguel Ángel-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0009-0007-9149-1237-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameDe León De Juan, José-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

3
checked on May 11, 2025

Page view(s)

65
checked on Dec 30, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.