Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48145
Título: Action-planning and execution from multimodal cues: An integrated cognitive model for artificial autonomous systems
Autores/as: Mathews, Zenon
Badia, Sergi Bermúdez I 
Verschure, Paul F M J
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Mobile Robot
Selective Attention
Autonomous System
Humanoid Robot
Data Association
Fecha de publicación: 2010
Publicación seriada: Studies in Computational Intelligence 
Resumen: Using multimodal sensors to perceive the environment and subsequently performing intelligent sensor/motor allocation is of crucial interest for building autonomous systems. Such a capability should allow autonomous entities to (re)allocate their resources for solving their most critical tasks depending on their current state, sensory input and knowledge about the world. Architectures of artificial real-world systems with internal representation of the world and such dynamic motor allocation capabilities are invaluable for systems with limited resources. Based upon recent advances in attention research and psychophysiology we propose a general purpose selective attention mechanism that supports the construction of a world model and subsequent intelligent motor control. We implement and test this architecture including its selective attention mechanism, to build a probabilistic world model. The constructed world-model is used to select actions by means of a Bayesian inference method. Our method is tested in a multi-robot task, both in simulation and in the real world, including a coordination mission involving aerial and ground vehicles.
URI: http://hdl.handle.net/10553/48145
ISBN: 9783642134272
ISSN: 1860-949X
DOI: 10.1007/978-3-642-13428-9_24
Fuente: Studies in Computational Intelligence[ISSN 1860-949X],v. 299, p. 479-497
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.