Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48138
Campo DC Valoridioma
dc.contributor.authorGuger, Christophen_US
dc.contributor.authorGener, Thomasen_US
dc.contributor.authorPennartz, Cyriel M Aen_US
dc.contributor.authorBrotons-Mas, Jorge R.en_US
dc.contributor.authorEdlinger, Günteren_US
dc.contributor.authorBermúdez i Badia, S.en_US
dc.contributor.authorVerschure, Paulen_US
dc.contributor.authorSchaffelhofer, Stefanen_US
dc.contributor.authorSanchez-Vives, Maria V.en_US
dc.contributor.otherSanchez-Vives, Maria-
dc.contributor.otherBermudez i Badia, Sergi-
dc.contributor.otherSchaffelhofer, Stefan-
dc.contributor.otherPennartz, Cyriel-
dc.contributor.othergener, thomas-
dc.contributor.otherVerschure, Paul F.M.J.-
dc.date.accessioned2018-11-23T19:14:19Z-
dc.date.available2018-11-23T19:14:19Z-
dc.date.issued2011en_US
dc.identifier.issn1662-4548en_US
dc.identifier.urihttp://hdl.handle.net/10553/48138-
dc.description.abstractBrain–computer interfaces (BCI) are using the electroencephalogram, the electrocorticogram and trains of action potentials as inputs to analyze brain activity for communication purposes and/or the control of external devices. Thus far it is not known whether a BCI system can be developed that utilizes the states of brain structures that are situated well below the cortical surface, such as the hippocampus. In order to address this question we used the activity of hippocampal place cells (PCs) to predict the position of an rodent in real-time. First, spike activity was recorded from the hippocampus during foraging and analyzed off-line to optimize the spike sorting and position reconstruction algorithm of rats. Then the spike activity was recorded and analyzed in real-time. The rat was running in a box of 80 cm × 80 cm and its locomotor movement was captured with a video tracking system. Data were acquired to calculate the rat’s trajectories and to identify place fields. Then a Bayesian classifier was trained to predict the position of the rat given its neural activity. This information was used in subsequent trials to predict the rat’s position in real-time. The real-time experiments were successfully performed and yielded an error between 12.2 and 17.4% using 5–6 neurons. It must be noted here that the encoding step was done with data recorded before the real-time experiment and comparable accuracies between off-line (mean error of 15.9% for three rats) and real-time experiments (mean error of 14.7%) were achieved. The experiment shows proof of principle that position reconstruction can be done in real-time, that PCs were stable and spike sorting was robust enough to generalize from the training run to the real-time reconstruction phase of the experiment. Real-time reconstruction may be used for a variety of purposes, including creating behavioral–neuronal feedback loops or for implementing neuroprosthetic control.en_US
dc.languageengen_US
dc.relation.ispartofFrontiers in Neuroscienceen_US
dc.sourceFrontiers in Neuroscience[ISSN 1662-4548] (85) (Junio 2011)en_US
dc.subject32 Ciencias médicasen_US
dc.subject.otherReal-time position reconstructionen_US
dc.subject.otherPlace cellsen_US
dc.subject.otherFiring fieldsen_US
dc.subject.otherSpatial navigationen_US
dc.subject.otherHippocampusen_US
dc.subject.otherBrain–computer interfaceen_US
dc.subject.otherBCIen_US
dc.subject.otherSpikesen_US
dc.titleReal-time position reconstruction with hippocampal place cellsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fnins.2011.00085en_US
dc.identifier.scopus84861839742-
dc.identifier.isi000209200600081-
dcterms.isPartOfFrontiers In Neuroscience-
dcterms.sourceFrontiers In Neuroscience[ISSN 1662-453X],v. 5-
dc.contributor.authorscopusid55903211100-
dc.contributor.authorscopusid24833058700-
dc.contributor.authorscopusid7003645919-
dc.contributor.authorscopusid35775850400-
dc.contributor.authorscopusid6602846965-
dc.contributor.authorscopusid6506360007-
dc.contributor.authorscopusid7006315557-
dc.contributor.authorscopusid35118111200-
dc.contributor.authorscopusid35605402100-
dc.identifier.issue85-
dc.relation.volume5en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000209200600081-
dc.contributor.daisngid247947-
dc.contributor.daisngid4004680-
dc.contributor.daisngid226308-
dc.contributor.daisngid2804730-
dc.contributor.daisngid4844975-
dc.contributor.daisngid788704-
dc.contributor.daisngid111546-
dc.contributor.daisngid3993936-
dc.contributor.daisngid343787-
dc.identifier.investigatorRIDJ-8526-2014-
dc.identifier.investigatorRIDC-8681-2018-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.utils.revisionen_US
dc.date.coverdateJunio 2011en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.orcid0000-0003-4452-0414-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameBermúdez I Badía,Sergi-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

23
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

21
actualizado el 17-nov-2024

Visitas

55
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.