Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/48007
DC FieldValueLanguage
dc.contributor.authorAndrada Félix, Juliánen_US
dc.contributor.authorFernández Rodríguez, Fernandoen_US
dc.date.accessioned2018-11-23T18:13:22Z-
dc.date.available2018-11-23T18:13:22Z-
dc.date.issued2008en_US
dc.identifier.issn0277-6693en_US
dc.identifier.urihttp://hdl.handle.net/10553/48007-
dc.description.abstractWe present a system for combining the different types of predictions given by a wide category of mechanical trading rules through statistical learning methods (boosting, and several model averaging methods like Bayesian or simple averaging methods). Statistical learning methods supply better out-of-sample results than most of the single moving average rules in the NYSE Composite Index from January 1993 to December 2002. Moreover, using a filter to reduce trading frequency, the filtered boosting model produces a technical strategy which, although it is not able to overcome the returns of the buy-and-hold (B&H) strategy during rising periods, it does overcome the B&H during falling periods and is able to absorb a considerable part of falls in the marketen_US
dc.languageengen_US
dc.publisher0277-6693
dc.relation.ispartofJournal of Forecastingen_US
dc.sourceJournal of Forecasting[ISSN 0277-6693],v. 27, p. 433-449en_US
dc.subject5302 Econometríaen_US
dc.subject.otherBolsa de valoresen_US
dc.subject.otherModelos económetricosen_US
dc.titleImproving moving average trading rules with boosting and statistical learning methodsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/for.1068
dc.identifier.scopus49649112896-
dc.identifier.isi000258426000005
dc.contributor.authorscopusid6505916889-
dc.contributor.authorscopusid6603053452-
dc.description.lastpage449-
dc.description.firstpage433-
dc.relation.volume27-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid3014920
dc.contributor.daisngid1514720
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Andrada-Felix, J
dc.contributor.wosstandardWOS:Fernandez-Rodriguez, F
dc.date.coverdateAgosto 2008
dc.identifier.ulpgces
dc.description.jcr0,508
dc.description.jcrqQ4
dc.description.ssciSSCI
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.orcid0000-0001-8598-3234-
crisitem.author.orcid0000-0002-8808-9286-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.fullNameAndrada Félix, Julián-
crisitem.author.fullNameFernández Rodríguez,Fernando Emilio-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

22
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

26
checked on Nov 17, 2024

Page view(s)

89
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.