Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48001
Título: Fixed income strategies based on the prediction of parameters in the NS model for the Spanish public debt market
Autores/as: Andrada Félix, Julián 
Fernández Pérez,Adrián 
Fernández Rodríguez, Fernando 
Clasificación UNESCO: 5302 Econometría
Palabras clave: Term structure
Nelson and Siegel model
Nearest neighbours
Fixed income
Fecha de publicación: 2015
Proyectos: Nuevas Metodologías en la Estimación de la Etti. Aplicaciones en Las Estrategias de Gestión de Renta Fija y en la Predicción Del Ciclo Económico. 
Publicación seriada: SERIEs 
Resumen: Using different econometric models, Diebold and Li (J Econom 130:337–364, 2006) addressed the practical problem of forecasting the yield curve by predicting the factors level, slope and curvature in the Nelson–Siegel framework. This paper has two main aims: on the one hand, to investigate the predictive possibilities of the yield curve for the Spanish public debt market, using the methodology proposed by Diebold and Li (J Econom 130:337–364, 2006); and on the other hand, to study the capability of generating profits by transforming these yield curve predictions into technical trading strategies. The Sharpe ratios of our strategies outperform the hedging strategy benchmarks for long (1 year) horizons in our prediction period (2000–2010) and also for the current crisis period (2008–2010). Nevertheless, these strategies do not outperform their benchmarks for short (1 month) horizons. The introduction of non-parametric models improves the profitability of the strategies in terms of the Sharpe ratio, especially in the 1-year-ahead predictions. This finding is in line with Diebold and Li (J Econom 130:337–364, 2006), whose forecasts for long horizons are much more accurate than those of several standard benchmark models.
URI: http://hdl.handle.net/10553/48001
ISSN: 1869-4187
DOI: 10.1007/s13209-015-0123-4
Fuente: SERIEs[ISSN 1869-4187],v. 6, p. 207-245
Colección:Artículos
miniatura
Adobe PDF (81,64 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.