Please use this identifier to cite or link to this item:
Title: Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows
Authors: van Dorland, H. A.
Richter, S.
Morel, I.
Doherr, M. G.
Castro, N. 
Bruckmaier, R. M.
Keywords: Mitochondrial 3-Hydroxy-3-Methylglutaryl-Coa Synthase
Body Condition
Gluconeogenic Enzymes
Liver, et al
Issue Date: 2009
Publisher: 0022-0302
Journal: Journal of Dairy Science 
Abstract: The purpose of this study was to investigate variations in hepatic regulation of metabolism during the dry period, after parturition, and in early lactation in dairy cows. For this evaluation, cows were divided into 2 groups based on the plasma concentration of beta-hydroxybutyric acid (BHBA) in wk 4 postpartum (PP; group HB, BHBA > 0.75 mmol/L; group LB, BHBA < 0.75 mmol/L, respectively). Liver biopsies were obtained from 28 cows at drying off (mean 59 +/- 8 d antepartum), on d 1, and in wk 4 and 14 PP. Blood samples were collected every 2 wk during this entire period. Liver samples were analyzed for mRNA abundance of genes related to carbohydrate metabolism (pyruvate carboxylase, PC; phosphoenolpyruvate carboxykinase, PEPCK; citrate synthase, CS), fatty acid biosynthesis (ATP citrate lyase, ACLY) and oxidation (acyl-CoA synthetase long-chain, ACSL; carnitine palmitoyltransferase 1A, CPT 1A; carnitine palmitoyltransferase 2, CPT 2; acyl-coenzyme A dehydrogenase very long chain, ACADVL), cholesterol biosynthesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMGCS1), ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, HMGCS2), and of genes encoding the transcription factors peroxisome proliferator-activated receptor alpha (PPAR alpha), peroxisome proliferator-activated receptor gamma (PPAR gamma), and sterol regulatory element binding factor 1 (SREBF1). Blood plasma was assayed for concentrations of glucose, BHBA, nonesterified fatty acids, cholesterol, triglycerides, insulin, insulin-like growth factor-I, and thyroid hormones. In both groups, plasma parameters followed a pattern usually observed in dairy cows. However, changes were moderate and the energy balance in cows turned positive in wk 7 PP for both groups. Additionally, the energy balance and milk yield were similar for both groups after parturition onwards. Significant group effects were found at drying off, when plasma concentrations of triglycerides were higher in LB than in HB, and in wk 4 PP, when plasma concentrations of glucose and IGF-I were lower in HB than in LB. Similarly, moderate changes in mRNA expression of hepatic genes between the different time points were observed, although HB cows showed more adaptive performance than LB cows based on changes in mRNA expression of PEPCKc, PEPCKm, CS, CPT 1A, CPT 2, and PPAR alpha. Part of the variation measured in this study was explained by parity. Significant Spearman rank correlation coefficients between the variables were not similar at each time point and were not similar between the groups at each time point, suggesting that metabolic regulation differs between cows. In conclusion, metabolic regulation in dairy cows is a dynamic system, and differs obviously between cows at different metabolic stages related to parturition.
ISSN: 0022-0302
DOI: 10.3168/jds.2008-1454
Source: Journal of Dairy Science[ISSN 0022-0302],v. 92, p. 1924-1940
Appears in Collections:Artículos
Show full item record


checked on Jan 29, 2023


checked on Jan 29, 2023

Page view(s)

checked on Jan 14, 2023

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.