Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47679
Campo DC Valoridioma
dc.contributor.authorWu, Yuanfengen_US
dc.contributor.authorLópez, Sebastiánen_US
dc.contributor.authorZhang, Bingen_US
dc.contributor.authorQiao, Feien_US
dc.contributor.authorGao, Lianruen_US
dc.date.accessioned2018-11-23T15:31:20Z-
dc.date.available2018-11-23T15:31:20Z-
dc.date.issued2019en_US
dc.identifier.issn1861-8200en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/47679-
dc.description.abstractInterest on anomaly detection for hyperspectral images has increasingly grown during the last decades due to the diversity of applications that benefit from this technique. However, the high computational cost inherent to this detection procedure seriously limits its processing efficiency, especially for onboard application scenarios. In this paper, a novel spectral and spatial approximate computing approach, named SSAC is proposed for onboard anomaly detection from hyperspectral images. To efficiently design the proposed approach, two preliminary aspects have been deeply analyzed in this work. First, data correlation in hyperspectral images in both spectral and spatial dimensions has been analyzed. The high data correlation in both spectral and spatial dimensions is considered to be one of the cornerstones of the SSAC approach. Second, the error resilience of a popular hyperspectral anomaly detection algorithm in both data level and algorithm level has been analyzed, which is considered to be another cornerstone of the SSAC approach. Based on the outcomes of this analysis, the processing of spectrally and spatially degraded images has been employed for reducing computation complexity in onboard hyperspectral anomaly detection scenarios in this work. Performance assessment tools such as ROC curves, Cost curves, and computing times have been used for evaluating the computing accuracy and efficiency of our proposal. The results obtained with a nonlinear anomaly detector for hyperspectral imagery, such as the well-known kernel RX-algorithm, show that the proposed SSAC approach greatly improves anomaly detection efficiency compared to the traditional method with negligible degeneration in accuracy. This is an important achievement to meet the restrictions of onboard hyperspectral anomaly detection scenarios.en_US
dc.languageengen_US
dc.publisher1861-8200en_US
dc.relation.ispartofJournal of Real-Time Image Processingen_US
dc.sourceJournal of Real-Time Image Processing[ISSN 1861-8200], v. 16(1), p. 99-114en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherAnomaly Detectionen_US
dc.subject.otherApproximate Computingen_US
dc.subject.otherHyperspectral Imageen_US
dc.subject.otherSpectral Spatial Degradationen_US
dc.subject.otherOnboard Applicationsen_US
dc.titleApproximate computing for onboard anomaly detection from hyperspectral imagesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typearticleen_US
dc.identifier.doi10.1007/s11554-018-0797-5en_US
dc.identifier.scopus85048372898-
dc.identifier.isi000458551300009-
dc.contributor.authorscopusid55558008700-
dc.contributor.authorscopusid57187722000-
dc.contributor.authorscopusid8835983800-
dc.contributor.authorscopusid17435719900-
dc.contributor.authorscopusid14031580000-
dc.identifier.eissn1861-8219-
dc.description.lastpage114en_US
dc.identifier.issue1-
dc.description.firstpage99en_US
dc.relation.volume16en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid606242-
dc.contributor.daisngid465777-
dc.contributor.daisngid238760-
dc.contributor.daisngid64592-
dc.contributor.daisngid7078674-
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Wu, YF-
dc.contributor.wosstandardWOS:Lopez, S-
dc.contributor.wosstandardWOS:Zhang, B-
dc.contributor.wosstandardWOS:Qiao, F-
dc.contributor.wosstandardWOS:Gao, LR-
dc.date.coverdateFebrero 2019en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,445
dc.description.jcr1,968
dc.description.sjrqQ2
dc.description.jcrqQ3
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-2360-6721-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLópez Suárez, Sebastián Miguel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.