Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47346
Título: An approximated box height for Differential-Box-Counting method to estimate fractal dimensions of gray-scale images
Autores/as: Panigrahy, Chinmaya
Garcia-Pedrero, Angel
Seal, Ayan
Rodríguez-Esparragón, Dionisio 
Mahato, Nihar Kumar
Gonzalo Martin,Consuelo 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Fractal Dimension
Dfferential Box Counting
Box height
Fractal Brownian Motion
Brodatz Database
Fecha de publicación: 2017
Publicación seriada: Entropy 
Resumen: The Fractal Dimension (FD) of an image defines the roughness using a real number which is highly associated with the human perception of surface roughness. It has been applied successfully for many computer vision applications such as texture analysis, segmentation and classification. Several techniques can be found in literature to estimate FD. One such technique is Differential Box Counting (DBC). Its performance is influenced by many parameters. In particular, the box height is directly related to the gray-level variations over image grid, which badly affects the performance of DBC. In this work, a new method for estimating box height is proposed without changing the other parameters of DBC. The proposed box height has been determined empirically and depends only on the image size. All the experiments have been performed on simulated Fractal Brownian Motion (FBM) Database and Brodatz Database. It has been proved experimentally that the proposed box height allow to improve the performance of DBC, Shifting DBC, Improved DBC and Improved Triangle DBC, which are closer to actual FD values of the simulated FBM images.
URI: http://hdl.handle.net/10553/47346
ISSN: 1099-4300
DOI: 10.3390/e19100534
Fuente: Entropy [eISSN 1099-4300],v. 19 (534)
Colección:Artículos
miniatura
pdf
Adobe PDF (3,13 MB)
Vista completa

Citas SCOPUSTM   

31
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

20
actualizado el 17-nov-2024

Visitas

201
actualizado el 01-nov-2024

Descargas

144
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.