Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/47205
DC FieldValueLanguage
dc.contributor.authorMontero, G.en_US
dc.contributor.authorSuárez Sarmiento, Antonio Félixen_US
dc.contributor.authorRodriguez, E.en_US
dc.contributor.authorFlorez, E.en_US
dc.contributor.authorGarcía, M. D.en_US
dc.date.accessioned2018-11-23T11:40:19Z-
dc.date.available2018-11-23T11:40:19Z-
dc.date.issued2005en_US
dc.identifier.isbn978-1-905088-00-3en_US
dc.identifier.issn1759-3433en_US
dc.identifier.urihttp://hdl.handle.net/10553/47205-
dc.description.abstractThe numerical modelling of a wind field using a mass consistent model yields a linear system of equations with symmetric positive definite matrix for each set of wind velocities measured at meteorological stations. This type of linear system may be written as A ε x ε = b ε , where ε is related to the so-called stability parameter of the wind model, with A ε = M + ε N. Matrices M and N do not change along the process for a given discretisation level. The rest of parameters and the wind measures only affect the vector b. There are two extreme strategies for preconditioning such linear systems. On the one hand, we can construct an initial preconditioner which is applied without any modification in the resolution of all the linear systems. The performance of the preconditioner will become worse progressively as the process advances, depending on the great or small variation in the value of ". On the second hand, we can use a different preconditioner for each linear system independently. This strategy would be very expensive and slow. So, the main goal of this work is to develop a preconditioner that can be updated in function of ". We propose the construction of an intermediate approach that works better than the former strategy and worse than the latter in terms of Conjugate Gradient iterations, but evidently at a lower computational cost.en_US
dc.languageengen_US
dc.sourceProceedings of the 10th International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp 2005en_US
dc.subject12 Matemáticasen_US
dc.subject1206 Análisis numéricoen_US
dc.subject.otherMass consistent modelsen_US
dc.subject.otherPreconditioned conjugate gradienten_US
dc.subject.otherPreconditioningen_US
dc.subject.otherShifted linear systemsen_US
dc.subject.otherWind modellingen_US
dc.titlePreconditioning shifted linear systems arising in a wind modelen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.4203/ccp.81.87en_US
dc.identifier.scopus80053416849-
dc.contributor.authorscopusid56256002000-
dc.contributor.authorscopusid36814487500-
dc.contributor.authorscopusid7401953314-
dc.contributor.authorscopusid6506781764-
dc.contributor.authorscopusid35403331600-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
dc.contributor.buulpgcBU-BASen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-5641-442X-
crisitem.author.orcid0000-0002-2701-2971-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMontero García, Gustavo-
crisitem.author.fullNameSuárez Sarmiento, Antonio Félix-
crisitem.author.fullNameRodríguez Barrera, Eduardo Miguel-
crisitem.author.fullNameFlorez Vázquez, Elizabet Margarita-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2024

Page view(s)

82
checked on Jan 6, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.