Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/47061
Title: Synthesis and biological studies of flexible brevetoxin/ciguatoxin models with marked conformational preference
Authors: Candenas, M. L.
Pinto, Francisco M.
Cintado, Cristina G.
Morales, Ezequiel Q.
Brouard, Ignacio
Díaz, M. Teresa
Rico, Milagros 
Rodríguez, Elsa 
Rodríguez, Rosa M.
Pérez, Ricardo
Pérez, Ruby L.
Martín, Julio D.
UNESCO Clasification: 2306 Química orgánica
Keywords: Sodium channels
Uterus
Toxins
Conformation
Polyethers
Issue Date: 2002
Publisher: 0040-4020
Journal: Tetrahedron 
Abstract: A comparison of the more active polyether toxins which are selective activators of voltage-sensitive sodium channels (VSSC), indicate that these molecules are mostly flat, with a hinge part around the middle of the molecules and a large curvature at one of the ends. Assuming that the receptor is topographically complementary to the active molecules, from the result reported here we could conclude, that the specific requirements of the receptor region can be achieved by synthetic polyether models based on exclusive participation of oxane/oxepane moieties. A new convergent approach to give oxepene rings via double reduction of methyl diacetals is explored. In searching for biological models to further characterize Na+ channels, our studies show that different voltage-dependent Na+ channels are expressed in the rat uterus and activated by brevetoxin-B. However, selected compound models synthesized in this work, failed to inhibit or activate Na+ channel function. This paper provides a survey of the synthesis, conformation and biological studies of trans-fused oxane/oxepane polyethers.
URI: http://hdl.handle.net/10553/47061
ISSN: 0040-4020
DOI: 10.1016/S0040-4020(02)00047-9
Source: Tetrahedron [ISSN 0040-4020], v. 58, p. 1921-1942
Appears in Collections:Artículos
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.