Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/47044
Campo DC Valoridioma
dc.contributor.authorPérez Rodríguez, Jorge Vicenteen_US
dc.contributor.authorTorra, Salvadoren_US
dc.contributor.authorAndrada Félix, Juliánen_US
dc.date.accessioned2018-11-23T10:23:31Z-
dc.date.available2018-11-23T10:23:31Z-
dc.date.issued2005en_US
dc.identifier.issn0927-5398en_US
dc.identifier.urihttp://hdl.handle.net/10553/47044-
dc.description.abstractThis paper studies whether it is possible to exploit the nonlinear behaviour of daily returns on the Spanish Ibex-35 stock index returns to improve forecasts over short and long horizons. In this sense, we examine the out-of-sample forecast performance of smooth transition autoregression (STAR) models and artificial neural networks (ANNs). We use one-step (obtained by using recursive and nonrecursive regressions) and multi-step-ahead forecasting methods. The forecasts are evaluated with statistical and economic criteria. In terms of statistical criteria, we compared the out-of-sample forecasts using goodness of forecast measures and various testing approaches. The results indicate that ANNs consistently surpass the random walk model and, although the evidence for this is weaker, provide better forecasts than the linear AR model and the STAR models for some forecast horizons and forecasting methods. In terms of the economic criteria, we assess the relative forecast performance in a simple trading strategy including the impact of transaction costs on trading strategy profits. The results indicate a better fit for ANN models, in terms of the mean net return and Sharpe risk-adjusted ratio, by using one-step-ahead forecasts. These results show there is a good chance of obtaining a more accurate fit and forecast of the daily stock index returns by using one-step-ahead predictors and nonlinear models, but that these are inherently complex and present a difficult economic interpretation.en_US
dc.languageengen_US
dc.publisher0927-5398
dc.relation.ispartofJournal of Empirical Financeen_US
dc.sourceJournal of Empirical Finance[ISSN 0927-5398],v. 12, p. 490-509en_US
dc.subject530202 Modelos econométricosen_US
dc.subject.otherAnálisis de series temporalesen_US
dc.subject.otherIbex35en_US
dc.titleSTAR and ANN models: forecasting performance on the Spanish "Ibex-35" stock indexen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.jempfin.2004.03.001
dc.identifier.scopus19644366535-
dc.contributor.authorscopusid56216749800-
dc.contributor.authorscopusid9036281900-
dc.contributor.authorscopusid6505916889-
dc.description.lastpage509-
dc.description.firstpage490-
dc.relation.volume12-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2005
dc.identifier.ulpgces
dc.description.ssciSSCI
dc.description.erihplusERIH PLUS
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-6738-9191-
crisitem.author.orcid0000-0001-8598-3234-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.fullNamePérez Rodríguez, Jorge Vicente-
crisitem.author.fullNameAndrada Félix, Julián-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

49
actualizado el 15-dic-2024

Visitas

122
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.