Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/47044
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Pérez Rodríguez, Jorge Vicente | en_US |
dc.contributor.author | Torra, Salvador | en_US |
dc.contributor.author | Andrada Félix, Julián | en_US |
dc.date.accessioned | 2018-11-23T10:23:31Z | - |
dc.date.available | 2018-11-23T10:23:31Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.issn | 0927-5398 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/47044 | - |
dc.description.abstract | This paper studies whether it is possible to exploit the nonlinear behaviour of daily returns on the Spanish Ibex-35 stock index returns to improve forecasts over short and long horizons. In this sense, we examine the out-of-sample forecast performance of smooth transition autoregression (STAR) models and artificial neural networks (ANNs). We use one-step (obtained by using recursive and nonrecursive regressions) and multi-step-ahead forecasting methods. The forecasts are evaluated with statistical and economic criteria. In terms of statistical criteria, we compared the out-of-sample forecasts using goodness of forecast measures and various testing approaches. The results indicate that ANNs consistently surpass the random walk model and, although the evidence for this is weaker, provide better forecasts than the linear AR model and the STAR models for some forecast horizons and forecasting methods. In terms of the economic criteria, we assess the relative forecast performance in a simple trading strategy including the impact of transaction costs on trading strategy profits. The results indicate a better fit for ANN models, in terms of the mean net return and Sharpe risk-adjusted ratio, by using one-step-ahead forecasts. These results show there is a good chance of obtaining a more accurate fit and forecast of the daily stock index returns by using one-step-ahead predictors and nonlinear models, but that these are inherently complex and present a difficult economic interpretation. | en_US |
dc.language | eng | en_US |
dc.publisher | 0927-5398 | |
dc.relation.ispartof | Journal of Empirical Finance | en_US |
dc.source | Journal of Empirical Finance[ISSN 0927-5398],v. 12, p. 490-509 | en_US |
dc.subject | 530202 Modelos econométricos | en_US |
dc.subject.other | Análisis de series temporales | en_US |
dc.subject.other | Ibex35 | en_US |
dc.title | STAR and ANN models: forecasting performance on the Spanish "Ibex-35" stock index | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1016/j.jempfin.2004.03.001 | |
dc.identifier.scopus | 19644366535 | - |
dc.contributor.authorscopusid | 56216749800 | - |
dc.contributor.authorscopusid | 9036281900 | - |
dc.contributor.authorscopusid | 6505916889 | - |
dc.description.lastpage | 509 | - |
dc.description.firstpage | 490 | - |
dc.relation.volume | 12 | - |
dc.investigacion | Ciencias Sociales y Jurídicas | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Junio 2005 | |
dc.identifier.ulpgc | Sí | es |
dc.description.ssci | SSCI | |
dc.description.erihplus | ERIH PLUS | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR Finanzas Cuantitativas y Computacionales | - |
crisitem.author.dept | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.dept | GIR Finanzas Cuantitativas y Computacionales | - |
crisitem.author.dept | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.orcid | 0000-0002-6738-9191 | - |
crisitem.author.orcid | 0000-0001-8598-3234 | - |
crisitem.author.parentorg | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.parentorg | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.fullName | Pérez Rodríguez, Jorge Vicente | - |
crisitem.author.fullName | Andrada Félix, Julián | - |
Colección: | Artículos |
Citas SCOPUSTM
49
actualizado el 15-dic-2024
Visitas
122
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.