Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46951
Título: Sclera recognition using dense-SIFT
Autores/as: Das, Abhijit
Pal, Umapada
Ballester, Miguel Angel Ferrer 
Blumenstein, Michael
Clasificación UNESCO: Investigación
Palabras clave: Biometric
Sclera Vessel Patterns
D-Sift
Svm
Bag Of Features, et al.
Fecha de publicación: 2014
Publicación seriada: International Conference on Intelligent Systems Design and Applications 
Conferencia: 2013 13th International Conference on Intellient Systems Design and Applications, ISDA 2013 
Resumen: In this paper we propose a biometric sclera recognition and validation system. Here the sclera segmentation is performed bya time-adaptive active contour-based region growing technique. The sclera vessels are not prominent so image enhancement is required and hence a bank of 2D decomposition. A Haar wavelet multi-resolution filter is used to enhance the vessels pattern for better accuracy. For feature extraction, Dense Scale Invariant Feature Transform (D-SIFT) is used. D-SIFT patch descriptors of each training image are used to form bag of features by using k-means clustering and a spatial pyramid model, which is used to produce the training model. Support Vector Machines (SVMs) are used for classification. The UBIRIS version 1 dataset is used here for experimentation. Anencouraging Equal Error Rate (EER) of 0.66% is attained in the experiments presented.
URI: http://hdl.handle.net/10553/46951
ISBN: 978-1-4799-3516-1
ISSN: 2164-7143
DOI: 10.1109/ISDA.2013.6920711
Fuente: International Conference on Intelligent Systems Design and Applications, ISDA [ISSN 2164-7143] (6920711), p. 74-79, (2013)
Colección:Actas de congresos
miniatura
Adobe PDF (904,65 kB)
Vista completa

Citas SCOPUSTM   

42
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

26
actualizado el 25-feb-2024

Visitas

70
actualizado el 11-may-2024

Descargas

227
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.