Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46947
Título: Multi-angle based lively sclera biometrics at a distance
Autores/as: Das, Abhijit
Pal, Umapada
Ballester, Miguel Angel Ferrer 
Blumenstein, Michael
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Iris recognition
Image segmentation
Feature extraction
biometrics (access control)
Fecha de publicación: 2015
Publicación seriada: IEEE Workshop on Computational Intelligence in Biometrics and Identity Management, CIBIM
Conferencia: 2014 IEEE Symposium Series on Computational Intelligence, IEEE SSCI 2014 - 2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management, CIBIM 2014 
Resumen: This piece of work proposes a liveliness based sclera eye biometric, validation and recognition technique at a distance. The images in this work are acquired by a digital camera in the visible spectrum at varying distance of about 1 meter from the individual. Each individual during registration as well as validation is asked to look straight and move their eye ball up, left and right keeping their face straight to incorporate liveliness of the data. At first the image is divided vertically into two halves and the eyes are detected in each half of the face image that is captured, by locating the eye ball by a Circular Hough Transform. Then the eye image is cropped out automatically using the radius of the iris. Next a C-means-based segmentation is used for sclera segmentation followed by vessel enhancement by the adaptive histogram equalization and Haar filtering. The feature extraction was performed by patch-based Dense-LDP (Linear Directive Pattern). Furthermore each training image is used to form a bag of features, which is used to produce the training model. Each of the images of the different poses is combined at the feature level and the image level to obtain higher accuracy and to incorporate liveliness. The fusion that produces the best result is considered. Support Vector Machines (SVMs) are used for classification. Here images from 82 individuals (both left and right eye i.e. 164 different eyes) are used and an appreciable Equal Error Rate of 0.52% is achieved in this work.
URI: http://hdl.handle.net/10553/46947
ISBN: 9781479945344
ISSN: 2325-4300
DOI: 10.1109/CIBIM.2014.7015439
Fuente: IEEE Workshop on Computational Intelligence in Biometrics and Identity Management, CIBIM[ISSN 2325-4300],v. 2015-January (7015439), p. 22-29
Colección:Actas de congresos
miniatura
Adobe PDF (888,65 kB)
Vista completa

Citas SCOPUSTM   

24
actualizado el 15-dic-2024

Visitas

63
actualizado el 18-may-2024

Descargas

176
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.