Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46947
Campo DC Valoridioma
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorPal, Umapadaen_US
dc.contributor.authorBallester, Miguel Angel Ferreren_US
dc.contributor.authorBlumenstein, Michaelen_US
dc.date.accessioned2018-11-23T09:38:14Z-
dc.date.available2018-11-23T09:38:14Z-
dc.date.issued2015en_US
dc.identifier.isbn9781479945344en_US
dc.identifier.issn2325-4300en_US
dc.identifier.urihttp://hdl.handle.net/10553/46947-
dc.description.abstractThis piece of work proposes a liveliness based sclera eye biometric, validation and recognition technique at a distance. The images in this work are acquired by a digital camera in the visible spectrum at varying distance of about 1 meter from the individual. Each individual during registration as well as validation is asked to look straight and move their eye ball up, left and right keeping their face straight to incorporate liveliness of the data. At first the image is divided vertically into two halves and the eyes are detected in each half of the face image that is captured, by locating the eye ball by a Circular Hough Transform. Then the eye image is cropped out automatically using the radius of the iris. Next a C-means-based segmentation is used for sclera segmentation followed by vessel enhancement by the adaptive histogram equalization and Haar filtering. The feature extraction was performed by patch-based Dense-LDP (Linear Directive Pattern). Furthermore each training image is used to form a bag of features, which is used to produce the training model. Each of the images of the different poses is combined at the feature level and the image level to obtain higher accuracy and to incorporate liveliness. The fusion that produces the best result is considered. Support Vector Machines (SVMs) are used for classification. Here images from 82 individuals (both left and right eye i.e. 164 different eyes) are used and an appreciable Equal Error Rate of 0.52% is achieved in this work.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Workshop on Computational Intelligence in Biometrics and Identity Management, CIBIMen_US
dc.sourceIEEE Workshop on Computational Intelligence in Biometrics and Identity Management, CIBIM[ISSN 2325-4300],v. 2015-January (7015439), p. 22-29en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherIris recognitionen_US
dc.subject.otherImage segmentationen_US
dc.subject.otherFeature extractionen_US
dc.subject.otherbiometrics (access control)en_US
dc.titleMulti-angle based lively sclera biometrics at a distanceen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2014 IEEE Symposium Series on Computational Intelligence, IEEE SSCI 2014 - 2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management, CIBIM 2014en_US
dc.identifier.doi10.1109/CIBIM.2014.7015439en_US
dc.identifier.scopus84937897888-
dc.contributor.authorscopusid7403596707-
dc.contributor.authorscopusid57214490551-
dc.contributor.authorscopusid57200742116-
dc.contributor.authorscopusid56126176900-
dc.contributor.authorscopusid56243577200-
dc.description.lastpage29en_US
dc.identifier.issue7015439-
dc.description.firstpage22en_US
dc.relation.volume2015-Januaryen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2015en_US
dc.identifier.conferenceidevents121550-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.event.eventsstartdate14-05-2001-
crisitem.event.eventsenddate18-05-2001-
Colección:Actas de congresos
miniatura
Adobe PDF (888,65 kB)
Vista resumida

Citas SCOPUSTM   

24
actualizado el 15-dic-2024

Visitas

63
actualizado el 18-may-2024

Descargas

176
actualizado el 18-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.