Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46787
Campo DC Valoridioma
dc.contributor.authorSánchez-Nielsen, Elenaen_US
dc.contributor.authorHernández Tejera, Marioen_US
dc.date.accessioned2018-11-23T08:10:52Z-
dc.date.available2018-11-23T08:10:52Z-
dc.date.issued2005en_US
dc.identifier.isbn0-7803-9245-0en_US
dc.identifier.issn1071-6572en_US
dc.identifier.urihttp://hdl.handle.net/10553/46787-
dc.description.abstractCurrently, object detection and tracking as well as behavior analysis represent one of the main problems to be solved in automated visual surveillance. In this paper, a fast and accurate computer vision module that can track objects in unrestricted environments is described. The proposed approach is aimed at tracking arbitrary shapes on dynamic changing environments without any assumption on the nature and speed of the objects. The tracker approach exploits shape and motion information through a predicting-matching-updating paradigm. The described approach does not need a priori 2D model of the target object to be tracked.en_US
dc.languageengen_US
dc.relationTecnicas Para El Robustecimiento de Procesos en Vision Artificial Para la Interaccionen_US
dc.sourceProceedings - International Carnahan Conference on Security Technology [ISSN 1071-6572] (1594873)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.titleA fast and accurate tracking approach for automated visual surveillanceen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.doi10.1109/CCST.2005.1594873en_US
dc.identifier.scopus42749102705-
dc.identifier.isi000236384200022-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid55966875800-
dc.identifier.eissn2153-0742-
dc.identifier.issue1594873-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorLorenzo Navarro, José Javier-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

1
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 15-dic-2024

Visitas

102
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.