Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46787
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Sánchez-Nielsen, Elena | en_US |
dc.contributor.author | Hernández Tejera, Mario | en_US |
dc.date.accessioned | 2018-11-23T08:10:52Z | - |
dc.date.available | 2018-11-23T08:10:52Z | - |
dc.date.issued | 2005 | en_US |
dc.identifier.isbn | 0-7803-9245-0 | en_US |
dc.identifier.issn | 1071-6572 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/46787 | - |
dc.description.abstract | Currently, object detection and tracking as well as behavior analysis represent one of the main problems to be solved in automated visual surveillance. In this paper, a fast and accurate computer vision module that can track objects in unrestricted environments is described. The proposed approach is aimed at tracking arbitrary shapes on dynamic changing environments without any assumption on the nature and speed of the objects. The tracker approach exploits shape and motion information through a predicting-matching-updating paradigm. The described approach does not need a priori 2D model of the target object to be tracked. | en_US |
dc.language | eng | en_US |
dc.relation | Tecnicas Para El Robustecimiento de Procesos en Vision Artificial Para la Interaccion | en_US |
dc.source | Proceedings - International Carnahan Conference on Security Technology [ISSN 1071-6572] (1594873) | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.title | A fast and accurate tracking approach for automated visual surveillance | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.type | ConferenceObject | es |
dc.identifier.doi | 10.1109/CCST.2005.1594873 | en_US |
dc.identifier.scopus | 42749102705 | - |
dc.identifier.isi | 000236384200022 | - |
dc.contributor.authorscopusid | 13105159100 | - |
dc.contributor.authorscopusid | 55966875800 | - |
dc.identifier.eissn | 2153-0742 | - |
dc.identifier.issue | 1594873 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.project.principalinvestigator | Lorenzo Navarro, José Javier | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0001-9717-8048 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Hernández Tejera, Francisco Mario | - |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 15-dic-2024
Visitas
102
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.