Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/46782
DC FieldValueLanguage
dc.contributor.authorAntón Canalís,Luisen_US
dc.contributor.authorSánchez-Nielsen, Elenaen_US
dc.contributor.authorHernández Tejera, Marioen_US
dc.date.accessioned2018-11-23T08:07:35Z-
dc.date.available2018-11-23T08:07:35Z-
dc.date.issued2006en_US
dc.identifier.isbn978-972-8865-40-5en_US
dc.identifier.urihttp://hdl.handle.net/10553/46782-
dc.description.abstractA new approach to solve the object tracking problem is proposed using a Swarm Intelligence metaphor. It is based on a prey-predator scheme with a swarm of predator particles defined to track a herd of prey pixels using the intensity of its flavours. The method is described, including the definition of predator particles' behaviour as a set of rules in a Boids fashion. Object tracking behaviour emerges from the interaction of individual particles. The paper includes experimental evaluations with video streams that illustrate the robustness and efficiency for real-time vision based tasks using a general purpose computer.en_US
dc.languageengen_US
dc.relationTecnicas Para El Robustecimiento de Procesos en Vision Artificial Para la Interaccionen_US
dc.sourceVISAPP 2006 - Proceedings of the 1st International Conference on Computer Vision Theory and Applications, february, 25-28, 2006, in Setúbal, Portugal [ISBN 972-8865-40-6], v. 2, p. 221-228en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherComputer visionen_US
dc.subject.otherReal time object trackingen_US
dc.subject.otherSwarm intelligenceen_US
dc.titleSwarmtrack: a particle swarm approach to visual trackingen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.identifier.scopus55749110295-
dc.identifier.isi000241914300035-
dc.contributor.authorscopusid8921191600-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid55966875800-
dc.description.lastpage228-
dc.description.firstpage221-
dc.relation.volume2-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.project.principalinvestigatorLorenzo Navarro, José Javier-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameAntón Canalís, Luis-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

2
checked on Feb 25, 2024

Page view(s)

90
checked on Jun 15, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.